QNX/UNIX: Анатомия параллелизма
QNX/UNIX: Анатомия параллелизма читать книгу онлайн
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
// устройством.
static iofunc_attr_t attr;
iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);
// здесь создается путевое имя для менеджера
id = resmgr_attach(dpp, &resmgr_attr, "/dev/prior",
_FTYPE_ANY, 0, &connect_funcs, &io_funcs, &attr);
if (id == -1)
perror("attach name"), exit(EXIT_FAILURE);
ctp = dispatch_context_alloc(dpp);
// старт менеджера как бесконечный цикл ожидания
// поступающих сообщений для диспетчеризации:
while (true) {
if ((ctp = dispatch_block(ctp)) == NULL)
perror("block error"), exit(EXIT_FAILURE);
dispatch_handler(ctp);
}
}
Здесь использован простейший однопоточный шаблон написания менеджера. Менеджер отрабатывает только одну команду
read()
open()
read()
# prior &
# ls -l /dev/pr*
nrw-rw-rw- 1 root root 0 Dec 18 17:13 /dev/prior
Все соответствует нашим ожиданиям: менеджер ресурса запущен, он зарегистрировал в пространстве имен свое имя
/dev/prior
# cat /dev/prior
10
# nice -n-5 cat /dev/prior
15
# nice -n-19 cat /dev/prior
29
Вот здесь и проявляется исключительная мощь техники написания менеджера ресурса: созданная минимальными средствами серверная служба «камуфлирует» специфичный QNX-механизм передачи сообщений микроядра под стандартные POSIX-запросы к файловой системе (
open()
read()
read()
Теперь разработка, например драйвера некоторого специфичного устройства, перемещается из области шаманства «системного программиста» в область деятельности проблемного программиста, да и выполняется привычными высокоуровневыми инструментальными средствами, например С++.
Пользуясь случаем, именно здесь уместно на примере созданного менеджера ресурсов продемонстрировать гибкость микроядерной архитектуры и техники менеджера ресурса, а заодно убедиться, что наследование приоритетов (критически важное свойство для систем реального времени) сохраняется при запросе к удаленному менеджеру ресурса, запущенному на другом узле сети (имя узла —
rtp
# on -frtp prior &
# ls -l /net/rtp/dev/pr*
nrw-rw--rw- 1 root root 0 Dec 18 17.09 /net/rtp/dev/prior
# nice -n-5 cat /net/rtp/dev/prior
15
# nice -n-19 cat /net/rtp/dev/prior
29
Многопоточный менеджер
Следующим шагом развития техники менеджера ресурсов является многопоточный менеджер. Фактически это объединение техники менеджера ресурсов с динамическим пулом потоков, рассмотренным выше.
Реальный работающий многопоточный менеджер с сопутствующим ему обстоятельным обсуждением приводился нами в книге [4] в главе «Драйверы». Мы не станем полностью приводить здесь этот достаточно объемный текст, поскольку он отличается от ранее показанного однопоточного менеджера только несколькими строками после вот этого оператора регистрации префикса имени менеджера:
// здесь создается путевое имя для менеджера
id = resmgr_attach(dpp, &resmgr_attr, "/dev/prior",
_FTYPE_ANY, 0, &connect_funcs, &io_funcs, &attr);
if (id == -1)
perror("attach name"), exit(EXIT_FAILURE);
Вот те несколько строк, которые, собственно, и превращают однопоточный менеджер в многопоточный:
...
thread_pool_attr_t pool_attr;
memset(&pool_attr, 0, sizeof pool_attr);
pool_attr.handle = dpp;
// это всегда остается так ...:
pool_attr.context_alloc = dispatch_context_alloc;
pool_attr.block_func = dispatch_block;
pool_attr.handler_func = dispatch_handler;
pool_attr.context_free = dispatch_context_free;
// численные параметры пула:
pool_attr.lo_water = 2;
pool_attr.hi_water = 6;
pool_attr.increment = 1;
pool_attr.maximum = 50;
thread_pool_t *tpp;
// флаг создания пула, который может принимать значения:
// POOL_FLAG_EXIT_SELF, POOL_FLAG_USE_SELF или,