QNX/UNIX: Анатомия параллелизма
QNX/UNIX: Анатомия параллелизма читать книгу онлайн
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
int thread_pool_limits(thread_pool_t* pool,
int lowater, int hiwater, int maximum, int increment, unsigned flags);
Менеджеры ресурсов
QNX вводит технику программирования, которая единообразно проходит сквозь всю систему. [41]Идея техники менеджеров ресурсов столь же проста, сколь и остроумна:
• Вся система построена на тщательно проработанной в теории (и редко используемой при построении реальных ОС) концепции - коммутации сообщений. Ядро (точнее «микроядро») операционной системы при таком подходе выступает в качестве компактного коммутатора сообщений между взаимодействующими программными компонентами. При этом взаимодействующие компоненты выступают в качестве клиента, запрашивающего услугу (ресурс), и сервера, обеспечивающего эту услугу (обслуживающего ресурс).
• Большинство системных вызовов API (в том числе все «привычные» POSIX-вызовы:
open()
read()
write()
seek()
close()
fs-dos
open()
• Раз эта схема столь универсальна, единообразна и не зависит от конкретной природы ресурса, на котором обеспечивается обслуживание, то разработчики QNX предоставляют некоторый шаблон сервера, в котором на месте обработчиков стандартных POSIX-запросов находятся пустые программные заглушки. Этот шаблон и служит базовым элементом построения разнообразных серверов услуг, называемых при выполнении в такой технике «менеджерами ресурса».
• При запуске программа менеджера ресурса регистрирует свое имя (точнее имя управляемого ею ресурса) в пространстве имен файловой системы QNX (обычно в каталоге
/dev
• Программисту, пишущему свой драйвер услуги, ресурса, устройства или псевдоустройства, остается только переопределить программное наполнение тех программных заглушек, которые ответственны за интересующие его вызовы (например,
open()
read()
close()
write()
seek()
В наши цели не входит детальное обсуждение техники написания менеджеров ресурсов (этому посвящено специальное исчерпывающее руководство в составе технической документации QNX объемом более 80 страниц [42]). Поэтому, как и ранее с динамическим пулом потоков, начнем с примера. Приведем простейший код менеджера ресурса, который использовался нами для тестирования наследования приоритетов в QNX ( файл prior.cc):
#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>
// обработчик запроса от клиента read(),
// возвращающий текущий приоритет обслуживания
static int prior_read(resmgr_context_t *ctp, io_read_t *msg,
RESMGR_OCB_T *ocb) {
static bool odd = true;
int status = iofunc_read_verify(ctp, msg, ocb, NULL);
if (status != EOK) return status;
if (msg->i.xtype & _IO_XTYPE_MASK != _ID_XTYPE_NONE)
return ENOSYS;
if (odd) {
struct sched_param param;
sched_getparam(0, &param);
static char rbuf[4];
sprintf(rbuf, "%dn", param.sched_curpriority);
MsgReply(ctp->rcvid, strlen(rbuf) + 1, rbuf, strlen(rbuf) + 1);
} else MsgReply(ctp->rcvid, EOK, NULL, 0);
odd = !odd;
return _RESMGR_NOREPLY;
}
// главная программа запуска менеджера
main(int argc, char **argv) {
resmgr_attr_t resmgr_attr;
dispatch_t *dpp;
dispatch_context_t *ctp;
int id;
// инициализация интерфейса диспетчеризации
if ((dpp = dispatch_create()) == NULL)
perror("allocate dispatch"), exit(EXIT_FAILURE);
// инициализация атрибутов менеджера
memset(&resmgr_attr, 0, sizeof resmgr_attr);
resmgr_attr.nparts_max = 1;
resmgr_attr.msg_max_size = 2048;
// инициализация таблиц функций обработчиков
static resmgr_connect_funcs_t connect_funcs;
static resmgr_io_funcs_t io_funcs;
iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs,
_RESMGR_IO_NFUNCS, &io_funcs);
// здесь нами дописан всего один обработчик - операции read,
// все остальное делается менеджером по умолчанию!
io_funcs.read = prior_read;
// инициализация атрибутной структуры, используемой