QNX/UNIX: Анатомия параллелизма
QNX/UNIX: Анатомия параллелизма читать книгу онлайн
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Создание нового процесса
Созданию процессов (имеется в виду создание процесса из программного кода) посвящено столько описаний [1-9], что детальное рассмотрение этого вопроса было бы лишь пересказом. Поэтому мы ограничимся только беглым перечислением этих возможностей, тем более что в ходе обсуждения нас главным образом интересуют не сами процессы, а потоки, заключенные в адресных пространствах процессов.
Использование командного интерпретатора
Самый простой способ — запустить из программного кода дочернюю копию командного интерпретатора, которому затем передать команду запуска процесса. Для этого используется вызов:
int system(const char* command);
где
command
Функция имеет еще одну специфическую форму вызова, когда в качестве
command
NULL
На время выполнения вызова
system()
system()
WEXITSTATUS()
<sys/wait.h>
#include <sys/wait.h>
int main(void) {
int rc = system("ls");
if (rc == -1) cout << "shell could not be run" << endl;
else
cout << "result of running command is " << WEXITSTATUS(rc) << endl;
return EXIT_SUCCESS;
}
Эта функция использует вызов
spawnlp()
spawnlp()
/bin/sh
Вызов
system()
• Используя копию командного интерпретатора, вызов
system()
• Остановка родительского процесса в ожидании завершения порожденного также легко разрешается: просто запускайте дочерний процесс из отдельного потока [11]:
#include <pthread.h>
void* process(void* command) {
system((char*)command);
delete command;
return NULL;
}
int main(int argc, char *argv[]) {
...
char* comstr = "ls -l";
pthread_create(NULL, NULL, strdup(comstr), &process);
...
}
• Часто в качестве недостатка этого способа отмечают «автономность» и невозможность взаимодействия родительского и порожденного процессов.
Но для расширения возможностей взаимосвязи процессов можно прежде всего воспользоваться вызовом
popen()
system()
popen()
FILE* popen(const char* command, const char* mode);
где
command
system()
mode
mode
mode
mode
В результате выполнения этой функции создается открытый файловый дескриптор канала (pipe), из которого породивший процесс может (
mode
STDOUT_FILENO
mode
STDIN_FILENO
Рассмотрим следующий пример. Конечно, посимвольный ввод/вывод — это не лучшее решение, и здесь мы используем его только для простоты:
int main(int argc, char** argv) {
FILE* f = popen("ls -l", "r");
if (f == NULL) perror("popen"), exit(EXIT_FAILURE);
char c;
while((с = fgetc(f)) != EOF )