QNX/UNIX: Анатомия параллелизма
QNX/UNIX: Анатомия параллелизма читать книгу онлайн
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
waitpid(pid, NULL, WEXITED);
exit(EXIT_SUCCESS);
}
}
if (pid == -1) {
cout << "exit with process number: << n << " - " << flush;
perror(NULL);
}
}
Этот достаточно непривычный по внешнему виду код дает нам следующий результат:
# pn
exit with process number: 1743 - Not enough memory
Системному сообщению о недостатке памяти достаточно трудно верить: чуть меньше 4 Кбайт программного кода в своих 1743 «реинкарнациях» требуют не более 6,6 Мбайт для своего размещения при свободных более 230 Мбайт в системе, в которой мы испытывали это приложение. Оставим это на совести создателей ОС QNX.
В продолжение нашей основной темы любопытно рассмотреть результаты вывода команды
pidin
• до запуска обсуждаемого приложения:
4/366186 1 /photon/bin/phcalc 10r REPLY 241691
• и после его завершения:
54652947 1 bin/pidin 10r REPLY 1
Легко видеть, что разница PID, равная 54652947 – 47366186 = 7286761, никак не является числом активированных на этом временном промежутке процессов, которое равно 1743. Поэтому к численным значениям PID нужно относиться с заметной осторожностью: это не просто инкрементированное значение числа запущенных процессов, схема формирования PID заметно сложнее.
В любом случае мы можем принять, что в ОС QNX Neutrino 6.2.1, как и в других «канонических» UNIX, количество процессов (если, конечно, эта ОС не дает нам более вразумительных оценок) ограничено цифрой 4095. Видно, что общее количество независимых потоков исполнения в системе может достигать совершенно ошеломляющей цифры. Но как бы много потоков мы ни создавали, им все равно придется конкурировать за доступ к самому главному ресурсу — процессору. В настоящее время реализованные в QNX дисциплины диспетчеризации работают над суммарным полем всех потоков в системе (рис. 2.1): если в системе выполняется Nпроцессов и i-й процесс реализует M i потоков, то в очередях диспетчеризации одновременно задействовано
управляемых объектов (потоков).Рис. 2.1. Диспетчеризация процессов
На рис. 2.1 изображены два процесса, выполняющиеся под управлением системы. Каждый процесс создал внутри себя различное количество потоков равного приоритета. Обратите внимание, что фактическая диспетчеризация производится не между процессами, а между потоками процессов, даже если иногда для простоты говорят «диспетчеризация процессов». Потоки объединены в циклическую очередь диспетчеризации, и пунктирная линия показывает порядок, в котором (в направлении стрелки) они будут поочередно получать квант времени.
Если ни один из потоков не будет выполнять блокирующих операций (
read()
delay()
accept()
MsgSend()
Из рисунка хорошо видно, что при диспетчеризации «в рамках системы» (об этом мы будем говорить позже) два запущенных процесса будут выполняться в неравных условиях: на каждый полный цикл диспетчеризации программный код, выполняющийся в рамках процесса А, будет получать 1 квант времени, а код в процессе B — 3 кванта.
Стандарт POSIX, определяя названную стратегию диспетчеризации константой
PTHREAD_SCOPE_SYSTEM
PTHREAD_SCOPE_PROCESS
PTHREAD_SCOPE_PROCESS
int pthread_attr_setscope(pthread_attr_t* attr, int scope);
int pthread_attr_getscope(const pthread_attr_t* attr, int* scope);
но в качестве параметра scope они допускают... только значение
PTHREAD_SCOPE_SYSTEM
PID (Process ID) — идентификатор процесса, присваиваемый процессу при его создании, например вызовом
fork()
Из других важных атрибутов процесса отметим [9]:
• PPID (Parent Process ID) — PID процесса, породившего данный процесс. Таким образом, все процессы в системе включены в единую древовидную иерархию.
• TTY — терминальная линия: терминал или псевдотерминал, ассоциированный с процессом. Если процесс становится процессом-демоном, то он отсоединяется от своей терминальной линии и не имеет ассоциированной терминальной линии. (Запуск процесса как фонового — знак «&» в конце командной строки — не является достаточным основанием для отсоединения процесса от терминальной линии.)
• RID и EUID — реальный и эффективный идентификаторы пользователя. Эффективный идентификатор служит для определения прав доступа процесса к системным ресурсам (в первую очередь к файловым системам). Обычно RID и EUID совпадают, но установка флага SUID для исполняемого файла процесса позволяет расширить полномочия процесса.
• RGID и EGID — реальный и эффективный идентификаторы группы пользователей. Как и в случае идентификаторов пользователя, EGID не совпадает с RGID, если установлен флаг SGID для исполняемого файла процесса.
Часто в качестве атрибутов процесса называют и приоритет выполнения. Однако приоритет является атрибутом не процесса (процесс — это статическая субстанция, контейнер), а потока, но если поток единственный (главный, порожденный функцией
main()