QNX/UNIX: Анатомия параллелизма
QNX/UNIX: Анатомия параллелизма читать книгу онлайн
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
# nice -n-19 p6s -n10000 -q
2854963 -> 2863156 : cycles - 57194634; on signal - 2859
2863156 -> 2854963 : cycles - 57199831; on signal - 2859
# nice -n-19 p6s -n1000000 -q
2871347 -> 2879540 : cycles - 571543013; on signal - 2857
2879540 -> 2871347 : cycles - 571550847; on signal - 2857
# nice -n-19 p6s -n1000000 -q
2887731 -> 2895924 : cycles - 5715903548; on signal - 2857
2895924 -> 2887731 : cycles - 5715908318; on signal - 2857
Это практически те же цифры, поэтому мы можем предположить, что, вообще-то говоря, для всех рассмотренных ранее схем обработки реализуется один и тот же внутренний механизм приема сигналов, который только лишь модифицируется в зависимости от используемой схемы.
Сигналы в потоках
Модель реакций на сигналы многопоточных приложений не проработана до конца в рамках POSIX и находится на стадии предварительных предложений. Тем не менее в системах с развитой многопоточностью (а QNX — именно такая система) эта сторона вопроса не может игнорироваться, и не только потому, что потоки в комбинации с сигналами могут создавать мощные конструктивные элементы программ, а еще и потому, что непроизвольные разблокирующие или завершающие операции, инициируемые сигналами, могут породить очень серьезные проблемы в случае многопоточности (мы еще будем возвращаться к этим вопросам по тексту). А раз так, то в этих случаях система должна обязательно предлагать некоторую модель функционирования (удачную или не очень).
Для того чтобы не допускать разночтений в вопросе, обратимся сначала к оригинальному фрагменту документации, описывающему принятую модель:
The original POSIX specification defined signal operation on processes only. In a multi-threaded process, the following rules are followed:
*The signal actions are maintained at the process level. If a thread ignores or catches a signal, it affects all threads within the process.
*The signal mask is maintained at the thread level. If a thread blocks a signal, it affects only that thread.
*An un-ignored signal targeted at a thread will be delivered to that thread alone.
*An un-ignored signal targeted at a process is delivered to the first thread that doesn't have the signal blocked. If all threads have the signal blocked, the signal will be queued on the process until any thread ignores or unblocks the signal. If ignored, the signal on the process will be removed. If unblocked, the signal will be moved from the process to the thread that unblocked it.
Все достаточно однозначно: обработчики сигналов определяются на уровне процесса, а вот сигнальные маски, определяющие, реагировать ли на данный сигнал, - на уровне каждого из потоков.
Для манипулирования сигнальными масками на уровне потоков нам придется использовать функцию
SignalProcmask()
#include <sys/neutrino.h>
int SignalProcmask(pid_t pid, int tid, int how, const sigset_t* set,
sigset_t* oldset);
Видна прямая аналогия с рассматривавшейся ранее функцией
sigprocmask()
sigprocmask()
SignalProcmask()
pid
pid
Остальные параметры соответствуют параметрам
sigprocmask()
SIG_PENDING
how
Рассмотрим, как это работает на примере простейшего кода ( файл s6.cc):
#include <stdio.h>
#include <iostream.h>
#include <signal.h>
#include <unistd.h>
#include <pthread.h>
#include <time.h>
#include <sys/neutrino.h>
static void handler(int signo, siginfo_t* info, void* context) {
cout << "SIG = " << signo << ";
TID = " << pthread_self() << endl;
}
sigset_t sig;
void* threadfunc(void* data) {
SignalProcmask(0, 0, SIG_UNBLOCK, &sig, NULL);
while (true) pause();
}
int main() {
sigemptyset(&sig);
sigaddset(&sig, SIGRTMIN);
sigprocmask(SIG_BLOCK, &sig, NULL);
cout << "Process " << getpid() << ", waiting for signal " <<
SIGRTMIN << endl;
struct sigaction act;
act.sa_mask = sig;
act.sa_sigaction = handler;
act.sa_flags = SA_SIGINFO;
if (sigaction(SIGRTMIN, &act, NULL) < 0)
perror("set signal handler: ");
const int thrnum = 3;
for (int i = 0; i < thrnum; i++)
pthread_create(NULL, NULL, threadfunc, NULL);
pause();
exit(EXIT_SUCCESS);
}
Для анализа этого и последующих фрагментов нам будет недостаточно команды
kill