QNX/UNIX: Анатомия параллелизма
QNX/UNIX: Анатомия параллелизма читать книгу онлайн
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Идея этого теста крайне проста:
• Создаются два процесса, один из которых (родительский) посылает серию последовательных (по номерам) сигналов, а второй (дочерний) должен их принять и обработать.
• Начальный и конечный номера сигналов в серии могут быть переопределены ключами
-b
-е
• Посылается не одиночный сигнал, а их повторяющаяся группа; размер группы повторений может быть переопределен ключом -
n
• В качестве значения, передаваемого с каждым сигналом, устанавливается последовательный номер его посылки в группе.
Таким образом, мы можем изменять последовательность сигналов на передаче и наблюдать последовательность их доставки к принимающему процессу. Запустим полученное приложение и сразу же командой
pidin
1077295 1 ./s5 10r NANOSLEEP
1081392 1 ./s5 10r NANOSLEEP
Это то, что мы и предполагали получить. Рассмотрим теперь результат выполнения приложения со значениями сигналов по умолчанию (сигналы 56...54, именно в порядке убывания, в каждой группе посылается 3 сигнала):
# ./s5
signal SIGRTMIN=41 - signal SIGRTMAX=56
CHILD: signal mask set
signal sent: 56 with val = 0
signal sent: 56 with val = 1
signal sent: 56 with val = 2
signal sent: 55 with val = 0
signal sent: 55 with val = 1
signal sent: 55 with val = 2
signal sent: 54 with val = 0
signal sent: 54 with val = 1
signal sent: 54 with val = 2
PARENT: finished!
# CHILD: signal unblock
received signal 56 code = -2 val = 0
received signal 56 code = -2 val = 1
received signal 56 code = -2 val = 2
received signal 55 code = -2 val = 0
received signal 55 code = -2 val = 1
received signal 55 code = -2 val = 2
received signal 54 code = -2 val = 0
received signal 54 code = -2 val = 1
received signal 54 code = -2 val = 2
Первый сюрприз, который нас ожидает, — это общее количество сигналов реального времени, выводимое программой в первой строке. Документация (HELP QNX) утверждает:
There are 24 POSIX 1003.1b realtime signals, including:
SIGRTMIN — First realtime signal.
SIGRTMAX — Last realtime signal.
Здесь есть некоторое несоответствие: тест дает значения констант
SIGRTMIN
SIGRTMAX
Но гораздо больший сюрприз состоит в порядке доставки сигналов из очереди FIFO принимающему процессу. Документация об этом сообщает (выделено нами):
The POSIX standard includes the concept of queued realtime signals. QNX Neutrino supports optional queuing of any signal, not just realtime signals. The queuing can be specified on a signal-by-signal basis within a process. Each signal can have an associated 8-bit code and a 32-bit value.
This is very similar to message pulses described earlier. The kernel takes advantage of this similarity and uses common code for managing both signals and pulses. The signal number is mapped to a pulse priority using SIGMAX — signo. As a result, signals are delivered in priority order with lower signal numbers having higher priority. This conforms with the POSIX standard, which states that existing signals have priority over the new realtime signals.
Изменим временной порядок возбуждения сигналов - от сигналов с меньшими номерами к сигналам с большими номерами:
# ./s5 -b54 -e56 -n2
signal SIGRTMIN=41 - signal SIGRTMAX=56
CHILD: signal mask set
signal sent: 54 with val = 0
signal sent: 54 with val = 1
signal sent: 55 with val = 0
signal sent: 55 with val = 1
signal sent: 56 with val = 0
signal sent: 56 with val = 1
PARENT: finished!
# CHILD: signal unblock
received signal 56 code = -2 val = 0
received signal 56 code = -2 val = 1
received signal 55 code = -2 val = 0
received signal 55 code = -2 val = 1
received signal 54 code = -2 val = 0
received signal 54 code = -2 val = 1
Независимо от порядка отправки сигналов порядок доставки их из очереди принимающему процессу сохраняется от старших номеров сигналов, которые являются более приоритетными, к младшим. А это в точности противоположно тому, что обещает документация, и соответствует картине, которую У. Стивенс наблюдал в ОС Sun Solaris 2.6 и которую он же комментирует словами: «Похоже, что в реализации Solaris 2.6 есть ошибка».
Выполним ту же задачу, но теперь не относительно сигналов диапазона реального времени, а относительно стандартных UNIX-сигналов. Выберем для этого произвольный диапазон сигналов (
<signal.h>
#define SIGVTALRM 28 /* virtual timer expired */
#define SIGPROF 29 /* profiling timer expired */
#define SIGXCPU 30 /* exceeded cpu limit */
#define SIGXFSZ 31 /* exceeded file size limit */
Посмотрим результат в этом случае:
# ./s5 -b28 -e31 -n2
signal SIGRTMIN=41 - signal SIGRTMAX=56
CHILD: signal mask set
signal sent: 28 with val = 0
signal sent: 28 with val = 1
signal sent: 29 with val = 0
signal sent: 29 with val = 1