Давайте создадим компилятор!
Давайте создадим компилятор! читать книгу онлайн
Эта серия, написанная в период с 1988 по 1995 года и состоящая из шестнадцати частей, является нетехническим введением в конструирование компиляторов. Серия является руководством по теории и практике разработки синтаксических анализаторов и компиляторов языков программирования. До того как вы закончите чтение этой книги, вы раскроете каждый аспект конструирования компиляторов, разработаете новый язык программирования и создадите работающий компилятор.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Пара комментариев:
Форма синтаксического анализатора выражений, использующего FirstTerm и т.п., немного отличается от того, что вы видели ранее. Это еще одна вариация на ту же самую тему. Не позволяйте им вертеть вами... изменения необязательны для того, что будет дальше.
Заметьте, что как обычно я добавил вызовы Fin в стратегических местах для поддержки множественных строк.
Прежде чем приступить к добавлению сканера, сначала скопируйте этот файл и проверьте, что он действительно корректно выполняет анализ. Не забудьте «кода»: "i" для IF, "l" для ELSE и "e" для ELSE или ENDIF.
Если программа работает, тогда давайте поспешим. При добавлении модулей сканера в программу поможет систематический план. Во всех синтаксических анализаторах, которые мы написали до этого времени, мы придерживались соглашения, что текущий предсказывающий символ должен всегда быть непустым символом. Мы предварительно загружали предсказывающий символ в Init и после этого оставляли «помпу запущенной». Чтобы позволить программе работать правильно с новыми строками мы должны ее немного модифицировать и обрабатывать символ новой строки как допустимый токен.
В многосимвольной версии правило аналогично: текущий предсказыващий символ должен всегда оставаться на начале следующей лексемы или на новой строке.
Многосимвольная версия показана ниже. Чтобы получить ее я сделал следующие изменения:
• Добавлены переменные Token и Value и определения типов, необходимые для Lookup.
• Добавлено определение KWList и KWcode.
• Добавлен Lookup.
• GetName и GetNum заменены их многосимвольными версиями. (Обратите внимание, что вызов Lookup был перемещен из GetName, так что он не будет выполняться внутри выражений).
• Создана новая, рудиментарная Scan, которая вызывает GetName затем сканирует ключевые слова.
• Создана новая процедура MatchString, которая ищет конкретное ключевое слово. Заметьте, что в отличие от Match, MatchString не считывает следующее ключевое слово.
• Изменен Block для вызова Scan.
• Немного изменены вызовы Fin. Fin теперь вызывается из GetName.
Программа полностью:
{–}
program KISS;
{–}
{ Constant Declarations }
const TAB = ^I;
CR = ^M;
LF = ^J;
{–}
{ Type Declarations }
type Symbol = string[8];
SymTab = array[1..1000] of Symbol;
TabPtr = ^SymTab;
{–}
{ Variable Declarations }
var Look : char; { Lookahead Character }
Token : char; { Encoded Token }
Value : string[16]; { Unencoded Token }
Lcount: integer; { Label Counter }
{–}
{ Definition of Keywords and Token Types }
const KWlist: array [1..4] of Symbol =
('IF', 'ELSE', 'ENDIF', 'END');
const KWcode: string[5] = 'xilee';
{–}
{ Read New Character From Input Stream }
procedure GetChar;
begin
Read(Look);
end;
{–}
{ Report an Error }
procedure Error(s: string);
begin
WriteLn;
WriteLn(^G, 'Error: ', s, '.');
end;
{–}
{ Report Error and Halt }
procedure Abort(s: string);
begin
Error(s);
Halt;
end;
{–}
{ Report What Was Expected }
procedure Expected(s: string);
begin
Abort(s + ' Expected');
end;
{–}
{ Recognize an Alpha Character }
function IsAlpha(c: char): boolean;
begin
IsAlpha := UpCase(c) in ['A'..'Z'];
end;
{–}
{ Recognize a Decimal Digit }
function IsDigit(c: char): boolean;
begin
IsDigit := c in ['0'..'9'];
end;
{–}
{ Recognize an AlphaNumeric Character }
function IsAlNum(c: char): boolean;
begin
IsAlNum := IsAlpha(c) or IsDigit(c);
end;
{–}
{ Recognize an Addop }
function IsAddop(c: char): boolean;
begin
IsAddop := c in ['+', '-'];
end;
{–}
{ Recognize a Mulop }
function IsMulop(c: char): boolean;
begin
IsMulop := c in ['*', '/'];
end;
{–}
{ Recognize White Space }
function IsWhite(c: char): boolean;
begin
IsWhite := c in [' ', TAB];
end;
{–}
{ Skip Over Leading White Space }
procedure SkipWhite;
begin
while IsWhite(Look) do
GetChar;
end;
{–}
{ Match a Specific Input Character }
procedure Match(x: char);
begin
if Look <> x then Expected('''' + x + '''');
GetChar;
SkipWhite;
end;
{–}
{ Skip a CRLF }
procedure Fin;
begin
if Look = CR then GetChar;
if Look = LF then GetChar;
SkipWhite;
end;
{–}
{ Table Lookup }
function Lookup(T: TabPtr; s: string; n: integer): integer;
var i: integer;
found: boolean;
begin
found := false;
i := n;
while (i > 0) and not found do
if s = T^[i] then
found := true
else
dec(i);
Lookup := i;
end;
{–}
{ Get an Identifier }
procedure GetName;
begin
while Look = CR do
Fin;
if not IsAlpha(Look) then Expected('Name');
Value := '';
while IsAlNum(Look) do begin
Value := Value + UpCase(Look);
GetChar;
end;
SkipWhite;
end;
{–}
{ Get a Number }
procedure GetNum;
begin
if not IsDigit(Look) then Expected('Integer');
Value := '';
while IsDigit(Look) do begin
Value := Value + Look;
GetChar;
end;
Token := '#';
SkipWhite;
end;
{–}
{ Get an Identifier and Scan it for Keywords }
procedure Scan;
begin
GetName;
Token := KWcode[Lookup(Addr(KWlist), Value, 4) + 1];
end;
{–}
{ Match a Specific Input String }
procedure MatchString(x: string);
begin
if Value <> x then Expected('''' + x + '''');
end;
{–}
{ Generate a Unique Label }
function NewLabel: string;
var S: string;
begin
Str(LCount, S);
NewLabel := 'L' + S;
Inc(LCount);
end;
{–}
{ Post a Label To Output }
procedure PostLabel(L: string);
begin
WriteLn(L, ':');
end;
{–}
{ Output a String with Tab }
procedure Emit(s: string);
begin
Write(TAB, s);
end;
{–}
{ Output a String with Tab and CRLF }
procedure EmitLn(s: string);
begin
Emit(s);
WriteLn;
end;
{–}
{ Parse and Translate an Identifier }
procedure Ident;
begin
GetName;
if Look = '(' then begin
Match('(');
Match(')');
EmitLn('BSR ' + Value);
end
else
EmitLn('MOVE ' + Value + '(PC),D0');
end;
{–}
{ Parse and Translate a Math Factor }
procedure Expression; Forward;
procedure Factor;
begin
if Look = '(' then begin
Match('(');
Expression;
Match(')');
end
else if IsAlpha(Look) then
Ident
else begin
GetNum;
EmitLn('MOVE #' + Value + ',D0');
end;
end;
{–}
{ Parse and Translate the First Math Factor }
procedure SignedFactor;
var s: boolean;
begin
s := Look = '-';
if IsAddop(Look) then begin
GetChar;
SkipWhite;
end;
Factor;
if s then
EmitLn('NEG D0');
end;
{–}
{ Recognize and Translate a Multiply }
procedure Multiply;
begin
Match('*');
Factor;
EmitLn('MULS (SP)+,D0');
end;
{–}
{ Recognize and Translate a Divide }
procedure Divide;
begin
Match('/');
Factor;
EmitLn('MOVE (SP)+,D1');
EmitLn('EXS.L D0');
EmitLn('DIVS D1,D0');
end;
{–}
{ Completion of Term Processing (called by Term and FirstTerm }
procedure Term1;
begin
while IsMulop(Look) do begin
EmitLn('MOVE D0,-(SP)');
case Look of
'*': Multiply;
'/': Divide;
end;
end;
end;
{–}
{ Parse and Translate a Math Term }
procedure Term;
begin
Factor;
Term1;
end;
{–}
{ Parse and Translate a Math Term with Possible Leading Sign }
procedure FirstTerm;
begin
SignedFactor;
Term1;
end;
{–}
{ Recognize and Translate an Add }
procedure Add;
begin
Match('+');
Term;
EmitLn('ADD (SP)+,D0');
end;
{–}
{ Recognize and Translate a Subtract }
procedure Subtract;
begin
Match('-');
Term;
EmitLn('SUB (SP)+,D0');
EmitLn('NEG D0');
end;
{–}
{ Parse and Translate an Expression }
procedure Expression;
begin
FirstTerm;
while IsAddop(Look) do begin
EmitLn('MOVE D0,-(SP)');
case Look of
'+': Add;
'-': Subtract;
end;
end;
end;
{–}
{ Parse and Translate a Boolean Condition }
{ This version is a dummy }
Procedure Condition;
begin
EmitLn('Condition');
end;
{–}
{ Recognize and Translate an IF Construct }
procedure Block; Forward;
procedure DoIf;
var L1, L2: string;
begin
Condition;
L1 := NewLabel;
L2 := L1;
EmitLn('BEQ ' + L1);
Block;
if Token = 'l' then begin
L2 := NewLabel;
EmitLn('BRA ' + L2);
PostLabel(L1);
Block;
end;
PostLabel(L2);
MatchString('ENDIF');
end;
{–}
{ Parse and Translate an Assignment Statement }
procedure Assignment;
var Name: string;
begin
Name := Value;
Match('=');
Expression;
EmitLn('LEA ' + Name + '(PC),A0');
EmitLn('MOVE D0,(A0)');
end;
{–}
{ Recognize and Translate a Statement Block }
procedure Block;
begin
Scan;
while not (Token in ['e', 'l']) do begin
case Token of
'i': DoIf;
else Assignment;
end;
Scan;
end;
end;
{–}
{ Parse and Translate a Program }
procedure DoProgram;
begin
Block;
MatchString('END');
EmitLn('END')
end;
{–}
{ Initialize }
procedure Init;
begin
LCount := 0;
GetChar;
end;
{–}
{ Main Program }
begin
Init;
DoProgram;
end.
{–}