Давайте создадим компилятор!
Давайте создадим компилятор! читать книгу онлайн
Эта серия, написанная в период с 1988 по 1995 года и состоящая из шестнадцати частей, является нетехническим введением в конструирование компиляторов. Серия является руководством по теории и практике разработки синтаксических анализаторов и компиляторов языков программирования. До того как вы закончите чтение этой книги, вы раскроете каждый аспект конструирования компиляторов, разработаете новый язык программирования и создадите работающий компилятор.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Случается что в реальных, практических грамматиках части, которые квалифицируются как регулярные выражения, имеют склонность быть низкоуровневыми частями, как определение идентификатора:
<ident> ::= <letter> [ <letter> | <digit> ]*
Так как требуется различные виды абстрактных машин для анализа этих двух типов грамматик, есть смысл отделить эти низкоуровневые функции в отдельный модуль, лексический анализатор, который строится на идее конечного автомата. Идея состоит в том, чтобы использовать самый простой метод синтаксического анализа, необходимый для работы.
Имеется другая, более практическая причина для отделения сканера от синтаксического анализатора. Мы хотим думать о входном исходном файле как потоке символов, которые мы обрабатываем справа налево без возвратов. На практике это невозможно. Почти каждый язык имеет некоторые ключевые слова типа IF, WHILE и END. Как я упомянул ранее, в действительности мы не можем знать является ли данная строка ключевым словом до тех пор пока мы не достигнем ее конца, что определено пробелом или другим разделителем. Так что мы должны хранить строку достаточно долго для того, чтобы выяснить имеем мы ключевое слово или нет. Это ограниченная форма перебора с возвратом.
Поэтому структура стандартного компилятора включает разбиение функций низкоуровневого и высокоуровневого синтаксического анализа. Лексический анализатор работает на символьном уровне собирая символы в строки и т.п., и передавая их синтаксическому анализатору как неделимые лексемы. Также считается нормальным позволить сканеру выполнять работу по идентификации ключевых слов.
Конечные автоматы и альтернативы
Я упомянул, что регулярные выражения могут анализироваться с использованием конечного автомата. В большинстве книг по компиляторам а также в большинстве компиляторов, вы обнаружите, что это применяется буквально. Обычно они имеют настоящую реализацию конечного автомата с целыми числами, используемыми для определения текущего состояния и таблицей действий, выполняемых для каждой комбинации текущего состояния и входного символа. Если вы пишите «front end» для компилятора, используя популярные Unix инструменты LEX и YACC, это то, что вы получите. Выход LEX – конечый автомат, реализованный на C плюс таблица действий, соответствующая входной грамматике данной LEX. Вывод YACC аналогичен... исскуственный таблично-управляемый синтаксический анализатор плюс таблица, соответствующая синтаксису языка.
Однако это не единственный вариант. В наших предыдущих главах вы много раз видели, что возможно реализовать синтаксические анализаторы специально не имея дела с таблицами, стеками и переменными состояния. Фактически в пятой главе я предупредил вас, что если вы считает себя нуждающимся в этих вещах, возможно вы делаете что-то неправильно и не используете возможности Паскаля. Существует в основном два способа определить состояние конечного автомата: явно, с номером или кодом состояния и неявно, просто на основании того факта, что я нахожусь в каком-то определенном месте кода (если сегодня вторник, то это должно быть Бельгия). Ранее мы полагались в основном на неявные методы, и я думаю вы согласитесь, что они работают здесь хорошо.
На практике может быть даже не обязательно иметь четко определенный лексический анализатор. Это не первый наш опыт работы с многосимвольными токенами. В третьей главе мы расширили наш синтаксический анализатор для их поддержки и нам даже не был нужен лексический анализатор. Причиной было то, что в узком контексте мы всегда могли сказать просто рассматривая единственный предсказывающий символ, имеем ли мы дело с цифрой, переменной или оператором. В действительности мы построили распределенный лексический анализатор, используя процедуры GetName и GetNum.
Имея ключевые слов мы не можем больше знать с чем мы имеем дело до тех пор, пока весь токен не будет прочитан. Это ведет нас к более локализованному сканеру, хотя, как вы увидите, идея распределенного сканера все же имеет свои достоинства.
Эксперименты по сканированию
Прежде чем возвратиться к нашему компилятору, было бы полезно немного поэкспериментировать с общими понятиями.
Давайте начнем с двух определений, наиболее часто встречающихся в настоящих языках программирования:
<ident> ::= <letter> [ <letter> | <digit> ]*
<number ::= [<digit>]+
(Не забудьте, что "*" указывает на ноль или более повторений условия в квадратных скобках, а "+" на одно и более.)
Мы уже работали с подобными элементами в третьей главе. Давайте начнем (как обычно) с пустого Cradle. Не удивительно, что нам понадобится новая процедура распознавания:
{–}
{ Recognize an Alphanumeric Character }
function IsAlNum(c: char): boolean;
begin
IsAlNum := IsAlpha(c) or IsDigit(c);
end;
{–}
Используя ее, давайте напишем следующие две подпрограммы, которые очень похожи на те, которые мы использовали раньше:
{–}
{ Get an Identifier }
function GetName: string;
var x: string[8];
begin
x := '';
if not IsAlpha(Look) then Expected('Name');
while IsAlNum(Look) do begin
x := x + UpCase(Look);
GetChar;
end;
GetName := x;
end;
{–}
{ Get a Number }
function GetNum: string;
var x: string[16];
begin
x := '';
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin
x := x + Look;
GetChar;
end;
GetNum := x;
end;
{–}
(Заметьте, что эта версия GetNum возвращает строку, а не целое число, как прежде).
Вы можете легко проверить что эти подпрограммы работают, вызвав их из основной программы:
WriteLn(GetName);
Эта программа выведет любое допустимое набранное имя (максимум восемь знаков, потому что мы так сказали GetName). Она отвергнет что-либо другое.
Аналогично проверьте другую подпрограмму.
Пробел
Раньше мы также работали с вложенными пробелами, используя две подпрограммы IsWhite и SkipWhite. Удостоверьтесь, что эти подпрограммы есть в вашей текущей версии Cradle и добавьте строку:
SkipWhite;
в конец GetName и GetNum.
Теперь давайте определим новую процедуру:
{–}
{ Lexical Scanner }
Function Scan: string;
begin
if IsAlpha(Look) then
Scan := GetName
else if IsDigit(Look) then
Scan := GetNum
else begin
Scan := Look;
GetChar;
end;
SkipWhite;
end;
{–}
Мы можем вызвать ее из новой основной программы:
{–}
{ Main Program }
begin
Init;
repeat
Token := Scan;
writeln(Token);
until Token = CR;
end.
{–}
(Вы должны добавить описание строки Token в начало программы. Сделайте ее любой удобной длины, скажем 16 символов).
Теперь запустите программу. Заметьте, что входная строка действительно разделяется на отдельные токены.
Конечные автоматы
Подпрограмма анализа типа GetName действительно реализует конечный автомат. Состояние неявно в текущей позиции в коде. Очень полезным приемом для визуализации того, что происходит, является синтаксическая диаграмма или «railroad-track» диаграмма. Немного трудно нарисовать их в этой среде, поэтому я буду использовать их очень экономно, но фигура ниже должна дать вам идею:
Как вы можете видеть, эта диаграмма показывает логические потоки по мере чтения символов. Начинается все, конечно, с состояния «start» и заканчивается когда найден символ, отличный от алфавитно-цифрового. Если первый символ не буква, происходит ошибка. Иначе автомат продолжит выполнение цикла до тех пор, пока не будет найден конечный разделитель.