Искусство программирования для Unix
Искусство программирования для Unix читать книгу онлайн
Книги, подобные этой, редко появляются на прилавках магазинов, поскольку за ними стоит многолетний опыт работы их авторов. Здесь описывается хороший стиль Unix-программирования, многообразие доступных языков программирования, их преимущества и недостатки, различные IPC-методики и инструменты разработки. Автор анализирует философию Unix, культуру и основные традиции сформированного вокруг нее сообщества. В книге объясняются наилучшие практические приемы проектирования и разработки программ в Unix. Вместе с тем описанные в книге модели и принципы будут во многом полезны и Windows-разработчикам. Особо рассматриваются стили пользовательских интерфейсов Unix-программ и инструменты для их разработки. Отдельная глава посвящена описанию принципов и инструментов для создания хорошей документации. Книга будет полезной для широкой категории пользователей ПК и программистов.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
7.2.4. Оболочки безопасности и цепи Бернштайна
7.2.5. Подчиненные процессы
7.2.5.1. Учебный пример: scp и ssh
7.2.6. Равноправный межпроцессный обмен данными
7.2.6.1. Временные файлы
7.2.6.2. Сигналы
7.2.6.3. Системные демоны и традиционные сигналы
7.2.6.4. Учебный пример: использование сигналов в программе fetchmail
7.2.6.5. Сокеты
7.2.6.5.1. Учебный пример: PostgreSQL
7.2.6.5.2. Учебный пример: Freeciv
7.2.6.6. Общая память
7.3. Проблемы и методы, которых следует избегать
7.3.1. Устаревшие IPC-методы в Unix
7.3.1.1. System V IPC
7.3.1.2. Потоки
7.3.2. Методы удаленного вызова процедур
7.3.3. Опасны ли параллельные процессы?
7.4. Разделение процессов на уровне проектирования
8 Мини-языки: поиск выразительной нотации
8.1. Классификация языков
8.2. Применение мини-языков
8.2.1. Учебный пример: sng
8.2.2. Учебный пример: регулярные выражения
8.2.3. Учебный пример: Glade
8.2.4. Учебный пример: т4
8.2.5. Учебный пример: XSLT
8.2.6. Учебный пример: инструментарий Documenter's Workbench
8.2.7. Учебный пример: синтаксис конфигурационного файла fetchmail
8.2.8. Учебный пример: awk
8.2.9. Учебный пример: PostScript
8.2.10. Учебный пример: утилиты bc и dc
8.2.11. Учебный пример: Emacs Lisp
8.2.12 Учебный пример: JavaScript
8.3. Проектирование мини-языков
8.3.1. Определение соответствующего уровня сложности
8.3.2. Расширение и встраивание языков
8.3.3. Написание специальной грамматики
8.3.4. Проблемы макросов
8.3.5. Язык или протокол прикладного уровня
9 Генерация кода: повышение уровня спецификации
9.1 Создание программ, управляемых данными
9.1.1. Учебный лример: ascii
9.1.2. Учебный пример: статистическая фильтрация спама
9.1.3. Учебный пример: программирование метаклассов в fetchmail
9.2. Генерация специального кода
9.2.1. Учебный пример: генерация кода для ascii-дисплеев
9.2.2. Учебный пример: генерация HTML-кода для табличного списка
10 Конфигурация: правильное начало
10.1. Конфигурируемые параметры
10.2. Месторасположение конфигурационной информации
10.3. Файлы конфигурации
10.3.1. Учебный пример: файл .netrc
10.3.2. Переносимость на другие операционные системы
10.4. Переменные окружения
10.4.1. Системные переменные окружения
10.4.2. Пользовательские переменные окружения
10.4.3. Когда использовать переменные окружения
10.4.4. Переносимость на другие операционные системы
10.5. Параметры командной строки
10.5.1. Параметры командной строки от -а до -z
10.5.2. Переносимость на другие операционные системы
10.6. Выбор метода
10.6.1. Учебный пример: fetchmail
10.6.2. Учебный пример: сервер XFree86
10.7. Нарушение правил
11 Интерфейсы: модели проектирования пользовательских интерфейсов в среде Unix
11.1. Применение правила наименьшей неожиданности
11.2. История проектирования интерфейсов в Unix
11.3. Оценка конструкций интерфейсов
11.4. Компромиссы между CLI- и визуальными интерфейсами
11.4.1. Учебный пример: два способа написания программы калькулятора
11.5. Прозрачность, выразительность и возможность конфигурирования
11.6. Модели проектирования интерфейсов в Unix
11.6.1. Модель фильтра
11.6.2. Модель заклинаний
11.6.3. Модель источника
11.6.4. Модель приемника
11.6.5. Модель компилятора
11.6.6. Модель редактора ed
11.6.7. Rogue-подобная модель
11.6.8. Модель "разделения ядра и интерфейса"
11.6.8.1. Пара конфигуратор/актор
11.6.8.2. Пара спулер/демон
11.6.8.3. Пара драйвер/ядро
11.6.8.4. Пара клиент/сервер
11.6.9. Модель CLI-сервера
11.6.10. Модель интерфейсов на основе языков
11.7. Применение Unix-моделей проектирования интерфейсов
11.7.1. Модель многопараметрических программ
11.8. Использование Web-браузера в качестве универсального клиента
11.9. Молчание — золото
12 Оптимизация
12.1. Отказ от оптимизации
12.2. Измерения перед оптимизацией
12.3. Размер кода
12.4. Пропускная способность и задержка
12.4.1. Пакетные операции
12.4.2. Совмещение операций
12.4.3. Кэширование результатов операций
13 Сложность: просто, как только возможно, но не проще
13.1. Сложность
13.1.1. Три источника сложности
13.1.2. Компромиссы между сложностью интерфейса и реализации
13.1.3. Необходимая, необязательная и случайная сложность
13.1.4. Диаграмма видов сложности
13.1.5. Когда простоты не достаточно
13.2. Редакторы
13.2.1. ed
13.2.2. vi
13.2.3. Sam
13.2.4. Emacs
13.2.5. Wily
13.3. Необходимый и достаточный размер редактора
13.3.1. Идентификация проблем сложности
13.3.2. Компромиссы не действуют
13.3.3. Является ли Emacs доводом против Unix-традиции?
13.4. Необходимый размер программы
Часть III Реализация
14 Языки программирования: С или не С?
14.1. Многообразие языков в Unix
14.2. Доводы против С
14.3. Интерпретируемые языки и смешанные стратегии
14.4. Сравнение языков программирования
14.4.1. С
14.4.1.1. Учебный пример: fetchmail
14.4.2. С++
14.4.2.1. С++ учебный пример: инструментарий Qt
14.4.3. Shell
14.4.3.1. Учебный пример: xmlto
14.4.3.2. Учебный пример: Sorcery Linux
14.4.4. Perl
14.4.4.1. Небольшой учебный пример по Perl: blq
14.4.4.2. Большой учебный пример по Perl: keeper
14.4.5. Tel
14.4.5.1. Учебный пример: TkMan
14.4.5.2. Moodss: большой учебный пример по Tel
14.4.6. Python
14.4.6.1. Небольшой учебный пример по Python: imgsizer
14.4.6.2. Учебный пример по Python среднего размера: fetchmailconf
14.4.6.3. Большой учебный пример Python: PIL
14.4.7. Java
14.4.7.1. Учебный пример: FreeNet
14.4.8. Emacs Lisp
14.5. Тенденции будущего
14.6. Выбор Х-инструментария
15 Инструментальные средства: тактические приемы разработчика
15.1. Операционная система, дружественная к разработчику
15.2. Выбор редактора
15.2.1. Полезные сведения о vi
15.2.2. Полезные сведения о Emacs
15.2.3. "Антирелигиозный" выбор: использование обоих редакторов
15.3. Генераторы специализированного кода
15.3.1. уасс и lex
15.3.1.1. Учебный пример: грамматика fetchmailrc
15.3.2. Учебный пример: Glade
15.4. Утилита make: автоматизация процедур
15.4.1. Базовая теория make
15.4.2. Утилита make в разработке не на C/C++
15.4.2.1. Учебный пример: использование make для преобразования файла документации
15.4.3. Правила make
15.4.4. Генерация make-файлов
15.4.4.1. makedepend
15.4.4.2. Imake
15.4.4.3. autoconf
15.4.4.4. automake
15.5. Системы контроля версий
15.5.1. Для чего используется контроль версий
15.5.2. Контроль версий вручную
15.5.3 Автоматизированный контроль версий
15.5.4. Unix-инструменты для контроля версий
15.5.4.1. Source Code Control System (SCCS)
15.5.4.2. Revision Control System (RCS)
15.5.4.3. Concurrent Version System (CVS)
15.5.4.4. Другие системы контроля версий
15.6. Отладка времени выполнения
15.7. Профилирование
15.8. Комбинирование инструментов с Emacs
15.8.1. Emacs и make
15.8.2. Emacs и отладка во время выполнения
15.8.3. Emacs и контроль версий
15.8.4. Emacs и профилирование
15.8.5. Лучше, чем IDE
16 Повторное использование кода: не изобретая колесо
16.1. История случайного новичка
16.2. Прозрачность — ключ к повторному использованию кода
16.3. От повторного использования к открытому исходному коду