Программирование на языке Ruby
Программирование на языке Ruby читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
else
list << @left
list << @right
loop do
node = list.shift
if node.left == nil
node.insert(x)
break
else
list << node.left
end
if node.right == nil
node.insert(x)
break
else
list << node.right
end
end
end
end
def traverse()
list = []
yield @data
list << @left if @left != nil
list << @right if @right != nil
loop do
break if list.empty?
node = list.shift
yield node.data
list << node.left if node.left != nil
list << node.right if node.right != nil
end
end
end
items = [1, 2, 3, 4, 5, 6, 7]
tree = Tree.new
items.each {|x| tree.insert(x)}
tree.traverse {|x| print "#{x} "}
print "n"
# Печатается "1 2 3 4 5 6 7 "
Такое дерево не слишком интересно. Но оно годится в качестве введения и фундамента, на котором можно возводить здание.
9.3.2. Сортировка с помощью двоичного дерева
Двоичное дерево позволяет эффективно реализовать сортировку произвольных данных. (Правда, если данные уже отсортированы, оно вырождается в обычный связанный список.) Причина ясна: при каждом сравнении мы исключаем половину мест, в которые можно поместить новый узел.
Хотя в настоящее время такой способ сортировки применяется редко, знать о нем не повредит. Код в листинге 9.2 основан на предыдущем примере.
class Tree
# Предполагается, что определения взяты из предыдущего примера...
def insert(x)
if @data == nil
@data = x
elsif x <= @data
if @left == nil
@left = Tree.new x
else
@left.insert x
end
else
if @right == nil
@right = Tree.new x
else
@right.insert x
end
end
end
def inorder()
@left.inorder {|y| yield y} if @left != nil
yield @data
@right.inorder {|y| yield y} if bright != nil
end
def preorder()
yield @data
@left.preorder {|y| yield y} if @left != nil
@right.preorder {|y| yield y} if @right != nil
end
def postorder()
@left.postorder {|y| yield y} if @left != nil
@right.postorder {|y| yield y} if @right != nil
yield @data
end
end
items = [50, 20, 80, 10, 30, 70, 90, 5, 14,
28, 41, 66, 75, 88, 96]
tree = Tree.new
items.each {|x| tree.insert(x)}
tree.inorder {|x| print x, " "}
print "n"
tree.preorder {|x| print x, " "}
print "n"
tree.postorder {|x| print x, " "}
print "n"
# Печатается:
# 5 10 14 20 28 30 41 50 66 70 75 80 88 90 96
# 50 20 10 5 14 30 28 41 80 70 66 75 90 88 96
# 5 14 10 28 41 30 20 66 75 70 88 96 90 80 50
9.3.3. Использование двоичного дерева как справочной таблицы
Пусть дерево уже отсортировано. Тогда оно может служить прекрасной справочной таблицей; например, для поиска в сбалансированном дереве, содержащем миллион узлов, понадобится не более 20 сравнений (глубина дерева равна логарифму числа узлов по основанию 2). Чтобы поиск был осмысленным, предположим, что в каждом узле хранится не какое-то одно значение, а ключ и ассоциированные с ним данные.