Программирование на языке Ruby
Программирование на языке Ruby читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
else towers(n-1, src, aux, dst) towers(1, src, dst, aux) towers(n-1, aux, dst, src) endendtowers(3, "а", "с", "b")Печатается точно такой же результат. Возможно, вам будет интересно знать, что «закомментарили» предложения, осуществляющие вывод, и сравнили время работы. Никому не говорите, но рекурсивное решение оказалось в два раза быстрее!
9.2.4. Более строгая реализация очереди
Мы определим очередь примерно так же, как стек. Если вы хотите защититься от некорректного доступа к структуре данных, рекомендуем поступать аналогично.
class Queue def initialize @store = [] end def enqueue(x) @store << x end def dequeue @store,shift end def peek @store.first end def length @store.length end def empty? @store.empty? endendОтметим, что класс
QueuethreadSizedQueueВ упомянутых классах методы имеют короткие имена:
enqdeqpushpopРазумеется, класс
Queuethread.rbStackQueueВ первом издании книги был длинный пример, демонстрирующий работу с очередями. Но, как и некоторые примеры, касающиеся стеков, он был исключен ради экономии места.
9.3. Деревья
В информатике идея дерева считается интуитивно очевидной (правда, изображаются они обычно с корнем наверху, а листьями снизу). И немудрено, ведь в повседневной жизни мы постоянно сталкиваемся с иерархическими данными: генеалогическое древо, организационная схема компании, структура каталогов на диске.
Терминология, описывающая деревья, богата, но понять ее легко. Элементы дерева называются узлами; верхний или самый первый узел называется корневым или корнем. У узла могут быть потомки, расположенные ниже него, а непосредственные потомки называются детьми или дочерними узлами. Узел, не имеющий потомков, называется листовым или просто листом. Поддерево состоит из некоторого узла и всех его потомков. Посещение всех узлов дерева (например, с целью распечатки) называется обходом дерева.
Нас будут интересовать в основном двоичные деревья, хотя в принципе узел может иметь произвольное число детей. Мы покажем, как создавать дерево, добавлять в него узлы и выполнять обход. Рассмотрим также некоторые реальные задачи, при решении которых используются деревья.
Отметим, что во многих языках, например в С или Pascal, деревья реализуются с помощью адресных указателей. Но в Ruby (как и в Java) указателей нет, вместо них используются ссылки на объекты, что ничуть не хуже, а иногда даже лучше.
9.3.1. Реализация двоичного дерева
Ruby позволяет реализовать двоичное дерево разными способами. Например, хранить значения узлов можно в массиве. Но мы применим более традиционный подход, характерный для кодирования на С, только указатели заменим ссылками на объекты.
Что нужно для описания двоичного дерева? Понятно, что в каждом узле должен быть атрибут для хранения данных. Кроме того, в каждом узле должны быть атрибуты для ссылки на левое и правое поддерево. Еще необходим способ вставить новый узел в дерево и получить хранящуюся в дереве информацию. Для этого нам потребуется два метода.
В первом дереве, которое мы рассмотрим, эти методы будут реализованы неортодоксальным способом. Позже мы расширим класс
TreeВ некотором смысле дерево определяется алгоритмом вставки и способом обхода. В нашем первом примере (листинг 9.1) метод
inserttraverseclass Tree attr_accessor :left attr_accessor :right attr_accessor :data def initialize(x=nil) @left = nil @right = nil @data = x end def insert(x) list = [] if @data == nil @data = x elsif @left == nil @left = Tree.new(x) elsif @right == nil @right = Tree.new(x)
