Десять «горячих точек» в исследованиях по искусственному интеллекту
Десять «горячих точек» в исследованиях по искусственному интеллекту читать книгу онлайн
Как самостоятельное научное направление искусственный интеллект (ИИ) существует чуть более четверти века. За это время отношение общества к специалистам, занимающимся подобными исследованиями, претерпело эволюцию от скепсиса к уважению. В передовых странах работы в области интеллектуальных систем поддерживаются на всех уровнях общества. Бытует устойчивое мнение, что именно эти исследования будут определять характер того информационного общества, которое уже приходит на смену индустриальной цивилизации, достигшей своей высшей точки расцвета в XX-м веке.
За прошедшие годы становления ИИ как особой научной дисциплины сформировались ее концептуальные модели, накопились специфические, принадлежащие только ей методы и приемы, устоялись некоторые фундаментальные парадигмы. Искусственный интеллект стал вполне респектабельной наукой, ничуть не менее почетной и нужной, чем физика или биология.
У специалистов старшего поколения, стоявших у колыбели зарождения новой сферы исследований, складывается убеждение, что период бурного развития кончился и теперь наступает эра вполне академических, спокойных и целенаправленных исследований, рассчитанных на длительный период.
Поэтому было бы весьма любопытно попытаться увидеть те основные направления исследований в ИИ, те «горячие точки», в которых будут сосредоточены основные усилия специалистов в конце уходящего века и начале нового тысячелетия. Анализ состояний текущих исследований позволяет выдвинуть предположение о наличии десяти таких «горячих точек. Именно они вынесены на обсуждение в данной книге.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Нужно отметить, что идеология моделей такого рода во многом опирается на методы и результаты, полученные ранее вне сферы интересов собственно искусственного интеллекта. Еще в конце 50-х годов появились первые работы в области клеточных автоматов и моделей коллективного поведения автоматов. Эти работы заложили основу для появления многоагентных систем. Новое, что внесли в эти исследования специалисты по интеллектуальным системам, – это повышение «уровня интеллекта» агентов. Они стали способны использовать свои локальные знания для достижения своих целей. И задачи согласования, организации их целесообразного взаимодействия трансформировались на верхнем уровне в задачи согласования целей и знаний, т.е. стали напрямую соотноситься с проблематикой искусственного интеллекта.
Возникающие тут проблемы тесно связаны с проблемами динамических баз знаний, с необходимостью оценки конфликтных целей, противоречий в знаниях. Они также предполагают использование упоминавшихся выше процедур оправдания в системах имеющихся знаний и концептуальных моделей.
Сторонники этого нового системного движения надеются, что в начале следующего века будет создано новое научное направление – теория асинхронных конфликтующих процессов или что-то подобное с другим названием, которое еще не появилось.
9. Сетевые модели.
Интеллектуальные системы, основанные на правилах (продукциях), принесли не только радость решения ряда важных задач, но и породили сомнения в том, что именно они призваны остаться основными моделями представления знаний в интеллектуальных системах. Многочисленные дискуссии 80- х годов, проводившиеся специалистами в области ИИ по этому поводу, привели к укреплению сетевой парадигмы, несколько отодвинутой в сторону триумфальным выходом на сцену продукционных моделей. И хотя исследования в области семантических сетей, каузальных сетей и сетей другого типа продолжались, они были малочисленными и не слишком продуктивными.
Но к концу 80-х годов сетевые модели стали развиваться более быстрыми темпами. Этот процесс совпал с пробуждением интереса к давно забытым нейронным архитектурам, появлением транспьютерных систем и нейрокомпьютеров, а также с возвращением к работам, опирающимся на эволюционные модели и эволюционное программирование. Возник определенный бум, который был даже окрещен неодарвинизмом.
Если к концу первого этапа развития сетевых моделей (в основном в виде нейронных многослойных систем типа персептронов) наступило разочарование в их возможностях и простоте их аппаратной реализации, то в 80-х годах эти сомнения были отброшены. Комплекс исследований в этой области так возрос, что произошло практическое отпочкование специалистов, работающих в области сетевых моделей, от основного ядра тех, кто причисляет себя к искусственному интеллекту. У «сетевиков» появились свои журналы, они стали проводить свои симпозиумы и конференции и формировать свою терминологию. Этот разрыв нарастает, что по-видимому, приведет к возникновению двух наук, связанных с построением интеллектуальных систем. Одна из них будет по-прежнему опираться на уровень ментальных (информационных) представлений, а другая – на уровень структурной организации (по типу нервных тканей), порождающей нужные решения. Во всяком случае в 90-е годы вряд ли можно ожидать спад интереса к сетевым моделям и многочисленным нерешенным проблемам, связанным с их построением и функционированием.
10. Метазнания.
Метазнания или знания о знаниях – непременный атрибут познавательных процессов. В искусственных системах они в том или ином виде присутствовали всегда (например, в виде схем баз данных в базах данных или в виде стратегий управления в продукционных системах).
Но только с полным осознанием глобальной цели искусственного интеллекта, которую можно сформулировать, как создание метасистемы, способной порождать все необходимые конкретные программы деятельности, стало ясно, что уровень метазнаний сам по себе представляет немалый интерес для изучения. Метазнания тесно связаны с теми основными для человека процедурами, которые позволяют ему учиться новым видам деятельности. Именно поэтому интерес к метазнаниям тесно связан с глубоким вниманием к процессу обучения, которое характерно для начала 90-х годов.
Интеллектуальные обучающие системы, использующие метазнания для организации учебного процесса, ориентированного на конкретного обучаемого, стали первым объектом, в котором метазнания «овеществились», приобрели все необходимые качества для конкретного изучения. В 90-х годах мы, наверняка, станем свидетелями первых впечатляющих результатов в этой области.
Заканчивая эту статью, хочу подчеркнуть, что выбор описанных тут десяти «горячих точек» исследований в области искусственного интеллекта, конечно, субъективен. Другие специалисты могли бы назвать и другие важные направления в развитии интеллектуальных систем. Но я тешу себя надеждой, что пересечение их с упомянутыми в статье направлениями было бы значительным.