-->

Десять «горячих точек» в исследованиях по искусственному интеллекту

На нашем литературном портале можно бесплатно читать книгу Десять «горячих точек» в исследованиях по искусственному интеллекту, Поспелов Дмитрий Александрович-- . Жанр: Прочая компьютерная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Десять «горячих точек» в исследованиях по искусственному интеллекту
Название: Десять «горячих точек» в исследованиях по искусственному интеллекту
Дата добавления: 16 январь 2020
Количество просмотров: 128
Читать онлайн

Десять «горячих точек» в исследованиях по искусственному интеллекту читать книгу онлайн

Десять «горячих точек» в исследованиях по искусственному интеллекту - читать бесплатно онлайн , автор Поспелов Дмитрий Александрович

Как самостоятельное научное направление искусственный интеллект (ИИ) существует чуть более четверти века. За это время отношение общества к специалистам, занимающимся подобными исследованиями, претерпело эволюцию от скепсиса к уважению. В передовых странах работы в области интеллектуальных систем поддерживаются на всех уровнях общества. Бытует устойчивое мнение, что именно эти исследования будут определять характер того информационного общества, которое уже приходит на смену индустриальной цивилизации, достигшей своей высшей точки расцвета в XX-м веке.

За прошедшие годы становления ИИ как особой научной дисциплины сформировались ее концептуальные модели, накопились специфические, принадлежащие только ей методы и приемы, устоялись некоторые фундаментальные парадигмы. Искусственный интеллект стал вполне респектабельной наукой, ничуть не менее почетной и нужной, чем физика или биология.

У специалистов старшего поколения, стоявших у колыбели зарождения новой сферы исследований, складывается убеждение, что период бурного развития кончился и теперь наступает эра вполне академических, спокойных и целенаправленных исследований, рассчитанных на длительный период.

Поэтому было бы весьма любопытно попытаться увидеть те основные направления исследований в ИИ, те «горячие точки», в которых будут сосредоточены основные усилия специалистов в конце уходящего века и начале нового тысячелетия. Анализ состояний текущих исследований позволяет выдвинуть предположение о наличии десяти таких «горячих точек. Именно они вынесены на обсуждение в данной книге.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

6. Синтез текстов.

С проблемами поиска релевантного знания и понимания текстов весьма тесно соприкасается еще одна проблема, привлекающая сейчас внимание специалистов, работающих в ИИ. Она связана с разгадкой механизмов, лежащих в основе процедур порождения текстов на заданную тему. Без ответов на возникающие тут вопросы нельзя организовать полноценный обмен информацией между людьми и системами искусственного интеллекта. Ибо механизм генерации целенаправленного текста вместе с механизмом анализа и понимания текстов образует основу процесса коммуникации – главного процесса в организации человеческого поведения и реализации всех видов его деятельности.

Как и процесс понимания, процесс синтеза текстов имеет многоуровневую структуру. После зарождения мотивов его генерации и осознания целей, которые предполагается достигнуть в акте общения, наступает этап порождения когнитивной структуры текста. Этот этап реализуется на уровне внутренних представлений системы о мире, хранящихся в базе знаний. Знания, релевантные целям, которые направляют процесс «строительства» текста, отбираются некоторым планировщиком на знаниях и собираются во внутреннюю структуру текста. После этого на уровне лингвистической компоновки текста другой планировщик превращает эту структуру в линейный текст на естественном языке. Этот текст еще лишен того, что в психолингвистике называют читабельностью. Он еще слишком связан с машинными представлениями. Куски плохо пригнаны друг к другу, отсутствует гладкость переходов и ясность изложения целей. Эти недостатки «глубинного текста» исправляются на третьем уровне генерации, который реализуется стилистическим планировщиком.

Описанная процедура генерации ставит перед ее создателями ряд проблем, не решенных к настоящему времени. Например, неясно, какие принципы лежат в основе построения когнитивных структур текстов. В пользу того, что такие принципы существуют, убедительно свидетельствуют, например, эксперименты по генерации текстов волшебных сказок или музыкальных произведений (также текстов, но использующих специальный язык для общения с пользователями). В первом случае когнитивная структура определяется набором глубинных функций В.Я. Проппа, задающих достаточно жесткий сценарий будущего текста. Во втором случае имеется конечная система правил, делающих процедуру композиции в нужной мере формальной.

Но остаются, по крайней мере, две важные проблемы, решение которых пока не найдено: а) как цели связаны с когнитивной структурой и б) как описываются когнитивные структуры тех типов текстов, которые нужны, например, в процессе естественно-языкового диалога. Большое внимание к проблемам теории речевых актов (нового направления в лингвистике) со стороны специалистов по ИИ подогревается надеждами найти здесь ответы на поставленные вопросы.

Неменьшей проблемой является переход от нелинейной структуры текста к ее линейному представлению. Этот переход тесно связан с исследованиями по гипертекстам. Определенный бум, возникший в этой области, как раз и связан с осознанием того факта, что линейный по форме текст, как правило, является внешним кодом нелинейной структуры, на которую он «натянут». Гипертекстовые технологии призваны не только обеспечить возможность работы с нелинейным представлением текстов, но и должны как-то решать задачи его линеаризации и перехода от линейного представления к гипертекстовому.

Этот комплекс взаимосвязанных задач сейчас настолько активно изучается, что есть немалые основания считать, что в ближайшие годы проблемы синтеза текстов найдут свое разрешение.

7. Когнитивная графика

Исторически сложилось так, что системы технического зрения и машинной графики всегда находились где-то на окраине области ИИ. Как и модели распознавания образов, методы, используемые для решения возникающих здесь задач, по своей сути были мало чем похожи на те, которые традиционно использовали специалисты по искусственному интеллекту. Для классических «систем, основанных на знаниях», как часто называются экспертные и другие интеллектуальные системы, уровень сенсорных и перцептивных процессов, играющих фундаментальную роль при зрительном восприятии или восприятии речи, оказался слишком «мелким». В их базах знаний был реализован куда более «крупный» уровень ментальных представлений. И пока специалисты по использованию зрительной и акустической информации в интеллектуальных системах занимались «нижними» уровнями восприятия и генерации, остальные специалисты, работающие в области ИИ, не находили с ними общего языка.

Настоящее общение между ними началось в 80-е годы, когда стали появляться первые исследования в области ментальной интерпретации перцептивных образов (анализ трехмерных сцен) и в области анимации зрительных картин, связанных с ментальными представлениями. Установление связи между текстами, описывающими сцены, и соответствующими изображениями потребовало наличия в базах знаний специальных представлений для зрительных образов и процедур соотнесения их с традиционными формами представления знаний.

Графическая информация стала трактоваться с позиций знаний, содержащихся в ней. Если до этого ее функция сводилась к иллюстрации тех или иных знаний и решений, то теперь она стала включаться равноправным образом в те когнитивные процессы, которые моделируются в базах знаний и на основе их содержимого. Термин «когнитивная графика» отражает этот принципиальный переход от иллюстрирующих изображений к видеообразам, способствующим решению задач и активно используемых для этого.

Когнитивная функция изображений использовалась в науке и до появления компьютеров. Образные представления, связанные с понятиями граф, дерево, сеть и т.п. помогли доказать немало новых теорем, круги Эйлера позволили визуализировать абстрактное отношение силлогистики Аристотеля, диаграммы Венна сделали наглядными процедуры анализа функций алгебры логики.

Систематическое использование когнитивной графики в компьютерах в составе человеко-машинных систем сулит многое. Даже весьма робкие попытки в этом направлении, известные как мультимедиа-технологии, привлекающие сейчас пристальное внимание специалистов (особенно тех, кто занят созданием интеллектуальных обучающих систем), показывает перспективность подобных исследований.

Пока же область компьютеризации правополушарных функций мозга человека остается почти терра инкогнито. Здесь начаты лишь первые большие проекты, направленные на создание систем, опирающихся на когнитивную графику. На наш взгляд, в ближайшие годы следует ожидать качественного прорыва в этой области ИИ.

8. Многоагентные системы

Тема с таким названием возникла на конференциях, посвященных проблемам ИИ, где-то в первой половине 80-х годов. Причин для появления такой проблематики было несколько. Прежде всего, стало ясно, что эффективная реализация ряда важных для интеллектуальных систем процедур требует параллельной и асинхронной их организации. Подобные процессы интегрируют в себе активности отдельных центров, решающих свои локальные задачи. Но эти локальные задачи и пути их решения должны быть согласованы в границах некоторых глобальных целей.

Примерами процедур такого рода могут быть процедуры согласования мнений различных экспертов по поиску решения сложной многоцелевой задачи, согласование локальных локомоций при синтезе интегрального движения (например, движение робота, снабженного зрением и манипуляторами) или процедура коллективного взаимодействия интеллектуальных систем при решении в автономном режиме некоторой общей задачи.

Появление специальных архитектур, призванных поддерживать такую организацию процессов (например, параллельные вычислительные системы, в которых используется принцип «доски объявлений»), еще более усилило интерес к многоагентным моделям. Наконец, уверенность в том, что в нервных тканях живых организмов реализуется асинхронный и параллельный режим поиска решения, также оказала свое влияние на исследования в области многоагентных систем.

Перейти на страницу:
Комментариев (0)
название