-->

UNIX: разработка сетевых приложений

На нашем литературном портале можно бесплатно читать книгу UNIX: разработка сетевых приложений, Стивенс Уильям Ричард-- . Жанр: ОС и Сети. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
UNIX: разработка сетевых приложений
Название: UNIX: разработка сетевых приложений
Дата добавления: 16 январь 2020
Количество просмотров: 376
Читать онлайн

UNIX: разработка сетевых приложений читать книгу онлайн

UNIX: разработка сетевых приложений - читать бесплатно онлайн , автор Стивенс Уильям Ричард

Новое издание книги, посвященной созданию веб-серверов, клиент-серверных приложений или любого другого сетевого программного обеспечения в операционной системе UNIX, — классическое руководство по сетевым программным интерфейсам, в частности сокетам. Оно основано на трудах Уильяма Стивенса и полностью переработано и обновлено двумя ведущими экспертами по сетевому программированию. В книгу включено описание ключевых современных стандартов, реализаций и методов, она содержит большое количество иллюстрирующих примеров и может использоваться как учебник по программированию в сетях, так и в качестве справочника для опытных программистов.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 22 23 24 25 26 27 28 29 30 ... 399 ВПЕРЕД
Перейти на страницу:

 sa_family_t sin_family;  /* AF_INET */

 in_port_t sin_port;      /* 16-разрядный номер порта TCP или UDP */

                          /* сетевой порядок байтов */

 struct in_addr sin_addr; /* 32-разрядный адрес IPv4 */

                          /* сетевой порядок байтов */

 char sin_zero[8];        /* не используется */

};

Есть несколько моментов, касающихся структур адреса сокета в целом, которые мы покажем на примере.

■ Элемент длины

sin_len
появился в версии 4.3BSD-Reno, когда была добавлена поддержка протоколов OSI (см. рис. 1.6). До этой реализации первым элементом был
sin_family
, который исторически имел тип
unsigned short
(целое без знака). Не все производители поддерживают поле длины для структур адреса сокета, и в POSIX, например, не требуется наличия этого элемента. Типы данных, подобные
uint8_t
, введены в POSIX (см. табл. 3.1). Наличие поля длины упрощает обработку структур адреса сокета с переменной длиной.

■ Даже если поле длины присутствует, нам не придется устанавливать и проверять его значение, пока мы не имеем дела с маршрутизирующими сокетами (см. главу 18). Оно используется внутри ядра процедурами, работающими со структурами адресов сокетов из различных семейств протоколов (например, код таблицы маршрутизации).

ПРИМЕЧАНИЕ

Четыре функции, передающие структуру адреса сокета от процесса к ядру, — bind, connect, sendto и sendmsg — используют функцию sockargs в реализациях, ведущих происхождение от Беркли [128, с. 452]. Эта функция копирует структуру адреса сокета из процесса и затем явно присваивает элементу sin_len значение размера структуры, переданной в качестве аргумента этим четырем функциям. Пять функций, передающих структуру адреса сокета от ядра к процессу, — accept, recvfrom, recvmsg, getpeername и getsockname — устанавливают элемент sin_len перед возвращением управления процессу.

К сожалению, обычно не существует простого теста, выполняемого в процессе компиляции и определяющего, задает ли реализация поле длины для своих структур адреса сокета. В нашем коде мы тестируем собственную константу HAVE_SOCKADDR_SA_LEN (см. листинг Г.2), но для того чтобы определить, задавать эту константу или нет, требуется откомпилировать простую тестовую программу, использующую необязательный элемент структуры, и проверить, успешно ли выполнена компиляция. В листинге 3.3 мы увидим, что от реализаций IPv6 требуется задавать SIN6_LEN, если структура адреса сокета имеет поле длины. В некоторых реализациях IPv4 (например, Digital Unix) поле длины предоставляется для приложений, основанных на параметре времени компиляции (например, _SOCKADDR_LEN). Это свойство обеспечивает совместимость с другими, более ранними программами.

■ POSIX требует наличия только трех элементов структуры:

sin_family
,
sin_addr
и
sin_port
. POSIX-совместимая реализация может определять дополнительные элементы структуры, и это норма для структуры адреса сокета Интернета. Почти все реализации добавляют элемент sin_zero, так что все структуры адреса сокета имеют размер как минимум 16 байт.

■ Типы элементов

s_addr
,
sin_family
и
sin_port
мы указываем согласно POSIX. Тип данных
in_addr_t
соответствует целому числу без знака длиной как минимум 32 бита,
in_port_t
— целому числу без знака длиной как минимум 16 бит, a
sa_family_t
— это произвольное целое число без знака. Последнее обычно представляет собой 8-разрядное целое без знака, если реализация поддерживает поле длины, либо 16-разрядное целое без знака, если поле длины не поддерживается. В табл. 3.1 перечислены эти три типа данных POSIX вместе с некоторыми другими типами данных POSIX, с которыми мы встретимся.

Таблица 3.1. Типы данных, требуемые POSIX

Тип данных Описание Заголовочный файл
int8_t 8-разрядное целое со знаком <sys/types.h>
uint8_t 8-разрядное целое без знака <sys/types.h>
int16_t 16-разрядное целое со знаком <sys/types.h>
uint16_t 16-разрядное целое без знака <sys/types.h>
int32_t 32-разрядное целое со знаком <sys/types.h>
uint32_t 32-разрядное целое без знака <sys/types.h>
sa_family_t семейство адресов структуры адреса сокета <sys/socket.h>
socklen_t длина структуры адреса сокета, обычно типа uint32_t <sys/socket.h>
in_addr_t IPv4-адрес, обычно типа uint32_t <netinet/in.h>
in_port_t порт TCP или UDP, обычно типа uint16_t <netinet/in.h>

■ Вы также встретите типы данных

u_char
,
u_short
,
u_int
и
u_long
, которые не имеют знака. POSIX определяет их с замечанием, что они устарели. Они предоставляются в целях обратной совместимости.

■ И адрес IPv4, и номер порта TCP и UDP всегда хранятся в структуре в соответствии с порядком байтов, определенным в сети (сетевой порядок байтовnetwork byte order). Об этом нужно помнить при использовании этих элементов (более подробно о разнице между порядком байтов узла и порядком байтов в сети мы поговорим в разделе 3.4).

■ К 32-разрядному адресу IPv4 можно обратиться двумя путями. Например, если

serv
 — это структура адреса сокета Интернета, то
serv.sin_addr
указывает на 32-разрядный адрес IPv4 как на структуру
in_addr
, в то время как
serv.sin_addr.s_addr
указывает на тот же 32-разрядный адрес IPv4 как на значение типа
in_addr_t
(обычно это 32-разрядное целое число без знака). Нужно следить за корректностью обращения к адресам IPv4, особенно при использовании их в качестве аргументов различных функций, потому что компиляторы часто передают структуры не так, как целочисленные переменные.

1 ... 22 23 24 25 26 27 28 29 30 ... 399 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название