-->

UNIX: разработка сетевых приложений

На нашем литературном портале можно бесплатно читать книгу UNIX: разработка сетевых приложений, Стивенс Уильям Ричард-- . Жанр: ОС и Сети. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
UNIX: разработка сетевых приложений
Название: UNIX: разработка сетевых приложений
Дата добавления: 16 январь 2020
Количество просмотров: 390
Читать онлайн

UNIX: разработка сетевых приложений читать книгу онлайн

UNIX: разработка сетевых приложений - читать бесплатно онлайн , автор Стивенс Уильям Ричард

Новое издание книги, посвященной созданию веб-серверов, клиент-серверных приложений или любого другого сетевого программного обеспечения в операционной системе UNIX, — классическое руководство по сетевым программным интерфейсам, в частности сокетам. Оно основано на трудах Уильяма Стивенса и полностью переработано и обновлено двумя ведущими экспертами по сетевому программированию. В книгу включено описание ключевых современных стандартов, реализаций и методов, она содержит большое количество иллюстрирующих примеров и может использоваться как учебник по программированию в сетях, так и в качестве справочника для опытных программистов.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

if (write( ... ) != nbytes)

 fprintf(stderr, "write error, errno = %dn", errno);

 errno = errno_save; /* восстанавливаем значение этой переменной

                        при завершении */

}

В этом коде мы также вызываем функцию

fprintf
, стандартную функцию ввода-вывода, из обработчика сигнала. Это еще одна проблема повторного вхождения, поскольку многие версии функций стандартной библиотеки ввода-вывода не допускают повторного вхождения: стандартные функции ввода-вывода не должны вызываться из обработчиков сигналов.

Мы вернемся к проблеме повторного вхождения в главе 26 и увидим, как проблема с переменной

errno
решается с помощью потоков. В следующем разделе описываются некоторые версии функций имен узлов, допускающие повторное вхождение.

11.19. Функции gethostbyname_r и gethostbyaddr_r

Чтобы превратить функцию, не допускающую повторное вхождение, такую как

gethostbyname
, в повторно входимую, можно воспользоваться двумя способами.

1. Вместо заполнения и возвращения статической структуры вызывающий процесс размещает структуру в памяти, и функция, допускающая повторное вхождение, заполняет эту структуру. Эта технология используется для перехода от функции

gethostbyname
(которая не допускает повторное вхождение) к функции
gethostbyname_r
(которая допускает повторное вхождение). Но это решение усложняется, поскольку помимо того, что вызывающий процесс должен предоставить структуру
hostent
для заполнения, эта структура также указывает на другую информацию: каноническое имя, массив указателей на псевдонимы, строки псевдонимов, массив указателей на адреса и сами адреса (см., например, рис. 11.2). Вызывающий процесс должен предоставить один большой буфер, используемый для дополнительной информации, и заполняемая структура
hostent
будет содержать различные указатели на этот буфер. При этом добавляется как минимум три аргумента функции: указатель на заполняемую структуру
hostent
, указатель на буфер, используемый для всей прочей информации, и размер этого буфера. Требуется также четвертый дополнительный аргумент — указатель на целое число, в котором будет храниться код ошибки, поскольку глобальная целочисленная переменная
h_errno
больше не может использоваться. (Глобальная целочисленная переменная
h_errno
создает ту же проблему повторного вхождения, которая описана нами для переменной
errno
.)

Эта технология также используется функциями

getnameinfo
и
inet_ntop
.

2. Входящая функция вызывает функцию

malloc
и динамически выделяет память. Это технология, используемая функцией
getaddrinfo
. Проблема при таком подходе заключается в том, что приложение, вызывающее эту функцию, должно вызвать также функцию
freeaddrinfo
, чтобы освободить динамическую память. Если эта функция не вызывается, происходит утечка памяти: каждый раз, когда процесс вызывает функцию, выделяющую память, объем памяти, задействованной процессом, возрастает. Если процесс выполняется в течение длительного времени (что свойственно сетевым серверам), то потребление памяти этим процессом с течением времени неуклонно растет.

Обсудим функции Solaris 2.x, допускающие повторное вхождение, не используемые для сопоставления имен с адресами, и наоборот (то есть для разрешения имен).

#include <netdb.h>

struct hostent *gethostbyname_r(const char *<i>hostname</i>,

struct hostent *<i>result</i>, char *<i>buf</i>, int <i>buflen</i>, int *<i>h_errnop</i>);

struct hostent *gethostbyaddr_r(const char *<i>addr</i>, int <i>len</i>,

 int <i>type</i>, struct hostent *<i>result</i>, char *<i>buf</i>, int <i>buflen</i>,

 int *<i>h_errnop</i>);

<i>Обе функции возвращают: непустой указатель в случае успешного выполнения, NULL в случае ошибки</i>

Для каждой функции требуется четыре дополнительных аргумента. Аргумент

result
 — это структура
hostent
, размещенная в памяти вызывающим процессом и заполняемая данной функцией. При успешном выполнении функции этот указатель также является возвращаемым значением.

Аргумент

buf
— это буфер, размещенный в памяти вызывающим процессом, a
buflen
 — его размер. Буфер будет содержать каноническое имя, массив указателей на псевдонимы, строки псевдонимов, массив указателей на адреса и сами адреса. Все указатели в структуре
hostent
, на которую указывает
result
, указывают на этот буфер. Насколько большим должен быть этот буфер? К сожалению, все, что сказано в большинстве руководств, это что-то неопределенное вроде «Буфер должен быть достаточно большим, чтобы содержать все данные, связанные с записью узла». Текущие реализации функции
gethostbyname
могут возвращать до 35 указателей на альтернативные имена (псевдонимы), до 35 указателей на адреса и использовать буфер размером 8192 байт для хранения альтернативных имен (псевдонимов) и адресов. Поэтому буфер размером 8192 байт можно считать подходящим.

Если происходит ошибка, код ошибки возвращается через указатель

h_errnop
, а не через глобальную переменную
h_errno
.

ПРИМЕЧАНИЕ

К сожалению, проблема повторного вхождения гораздо серьезнее, чем может показаться. Во-первых, не существует стандарта относительно повторного вхождения и функций gethostbyname и gethostbyaddr. POSIX утверждает, что эти две функции не обязаны быть безопасными в многопоточной среде.

Во-вторых, не существует стандарта для функций _r. В этом разделе (в качестве примера) мы привели две функции _r, предоставляемые Solaris 2.x. В Linux присутствуют аналогичные функции, возвращающие hostent в качестве аргумента типа значение-результат. В Digital Unix и HP-UX имеются версии этих функций с другими аргументами. Первые два аргумента функции gethostbyname_r такие же, как и в версии Solaris, но оставшиеся три аргумента версии Solaris объединены в новую структуру hostent_data (которая должна быть размещена в памяти вызывающим процессом), а указатель на эту структуру — это третий и последний аргумент. Обычные функции gethostbyname и gethostbyaddr в Digital Unix 4.0 и в HP-UX 10.30 допускают повторное вхождение при использовании собственных данных потоков (см. раздел 23.5). Интересный рассказ о разработке функций _r Solaris 2.x содержится в [70].

Наконец, хотя версия функции gethostbyname, допускающая повторное вхождение, может обеспечить безопасность, когда ее одновременно вызывают несколько различных потоков, это ничего не говорит нам о возможности повторного вхождения для лежащих в ее основе функций распознавателя.

Перейти на страницу:
Комментариев (0)
название