-->

Операционная система UNIX

На нашем литературном портале можно бесплатно читать книгу Операционная система UNIX, Робачевский Андрей Михайлович-- . Жанр: ОС и Сети. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Операционная система UNIX
Название: Операционная система UNIX
Дата добавления: 16 январь 2020
Количество просмотров: 432
Читать онлайн

Операционная система UNIX читать книгу онлайн

Операционная система UNIX - читать бесплатно онлайн , автор Робачевский Андрей Михайлович

Книга посвящена семейству операционных систем UNIX и содержит информацию о принципах организации, идеологии и архитектуре, объединяющих различные версии этой операционной системы.

В книге рассматриваются: архитектура ядра UNIX (подсистемы ввода/вывода, управления памятью и процессами, а также файловая подсистема), программный интерфейс UNIX (системные вызовы и основные библиотечные функции), пользовательская среда (командный интерпретатор shell, основные команды и утилиты) и сетевая поддержка в UNIX (протоколов семейства TCP/IP, архитектура сетевой подсистемы, программные интерфейсы сокетов и TLI).

Для широкого круга пользователей.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Доступ к драйверам STREAMS осуществляется с помощью коммутатора символьных устройств — таблицы

cdevsw[]
. Каждая запись этой таблицы имеет поле
d_str
, которое равно
NULL
для обычных символьных устройств. Для драйверов STREAMS это поле хранит указатель на структуру
streamtab
драйвера. Таким образом, через коммутатор устройств ядро имеет доступ к структуре
streamtab
драйвера, а значит и к его точкам входа. Для обеспечения доступа к драйверу из прикладного процесса необходимо создать файловый интерфейс — т.е. специальный файл символьного устройства, старший номер которого был бы равен номеру элемента
cdevsw[]
, адресующего точки входа драйвера.

Создание потока

Поток создается при первом открытии с помощью системного вызова специального файла устройства, ассоциированного с драйвером STREAMS. Как правило, процесс создает поток в два этапа: сначала создается элементарный поток, состоящий из нужного драйвера и головного модуля (являющегося обязательным приложением), а затем производится встраивание дополнительных модулей для получения требуемой функциональности.

Процесс открывает поток с помощью системного вызова open(2), передавая ему в качестве аргумента имя специального файла устройства. При этом ядро производит трансляцию имени и обнаруживает, что адресуемый файл принадлежит файловой системе specfs, через которую в дальнейшем производятся все операции работы с файлом. В памяти размещается vnode этого файла и вызывается функция открытия файла для файловой системы specfs —

spec_open()
. В свою очередь
spec_open()
находит требуемый элемент коммутатора
cdevsw[]
и обнаруживает, что поле
d_str
ненулевое. Тогда она вызывает процедуру подсистемы STREAMS
stropen()
, которая отвечает за размещение головного модуля и подключение драйвера. После выполнения необходимых операций поток приобретает вид, изображенный на рис. 5.22.

Операционная система UNIX - img_86.jpeg

Рис. 5.22. Структура потока после открытия

Головной модуль представлен структурой

stdata
, которая выполняет роль интерфейса между потоком и ядром системы при выполнении операций чтения, записи и управления. Индексный дескриптор vnode содержит указатель на эту структуру. Поля
q_ptr
структур
queue
головного модуля также указывают на
stdata
. Поля
q_qinfo
очередей
queue
указывают на структуры
qinit
, адресующие общие для всех головных модулей функции, реализованные самой подсистемой STREAMS.

Очереди чтения и записи драйвера связываются с соответствующими очередями головного модуля. Информация, хранящаяся в структуре

streamtab
используется для заполнения полей
q_qinfo
соответствующих структур queue драйвера указателями на процедурные интерфейсы очередей чтения и записи.

В завершение вызывается функция

<i>xx</i>open()
драйвера. При последующих операциях открытия потока функция
stropen()
последовательно вызовет функции
<i>xx</i>open()
каждого модуля и драйвера, тем самым информируя их, что другой процесс открыл тот же поток, и позволяя разместить соответствующие структуры данных для обработки нескольких каналов одновременно. Обычно открытие потоков производится через драйвер клонов.

После открытия потока процесс может произвести встраивание необходимых модулей. Для этого используется системный вызов ioctl(2). Команда

I_PUSH
этой функции служит для встраивания модулей, а команда
I_POP
— для извлечения модулей из потока. Приведем типичный сценарий конструирования потока:

fd = open(&quot;/dev/stream&quot;, O_RDWR);

ioctl(fd, I_PUSH, &quot;module1&quot;);

ioctl(fd, I_PUSH, &quot;module2&quot;);

...

ioctl(fd, I_POP, (char*)0);

ioctl(fd, I_POP, (char*)0);

close(fd);

В этом примере процесс открыл поток /dev/stream, а затем последовательно встроил модули module1 и module2. Заметим, что команда

I_PUSH
системного вызова ioctl(2) встраивает модуль непосредственно после головного модуля. После выполнения операций ввода/вывода, процесс извлек модули и закрыл поток. [64]

Поскольку модули описываются такими же структурами данных, что и драйверы, схемы их встраивания похожи. Как и в случае драйверов, для заполнения полей

q_qinfo
структур queue используются данные из структуры
streamtab
модуля. Для хранения информации, необходимой для инициализации модуля, во многих версиях UNIX используется таблица
fmodsw[]
, каждый элемент которой хранит имя модуля и указатель на структуру
streamtab
. После установления всех связей вызывается функция
<i>xx</i>open()
модуля.

Управление потоком

Управление потоком осуществляется прикладным процессом с помощью команд системного вызова ioctl(2):

#include &lt;sys/types.h&gt;

#include &lt;stropts.h&gt;

#include &lt;sys/conf.h&gt;

int ioctl(int fildes, int command, ... /* arg */);

Хотя часть команд обрабатывается исключительно головным модулем потока, другие предназначены промежуточным модулям или драйверу. Для этого головной модуль преобразует команды ioctl(2) в сообщения и направляет их вниз по потоку. При этом возникают две потенциальные проблемы: синхронизация процесса с системным вызовом (поскольку передача сообщения и реакция модуля имеют асинхронный характер) и передача данных между процессом и модулем.

Синхронизацию осуществляет головной модуль. Когда процесс выполняет системный вызов ioctl(2), который может быть обработан самим головным модулем, последний выполняет все операции в контексте процесса, и никаких проблем синхронизации и копирования данных не возникает. Именно так происходит обработка ioctl(2) для обычных драйверов устройств. Если же головной модуль не может обработать команду, он блокирует выполнение процесса и формирует сообщение

M_IOCTL
, содержащее команду и ее параметры, и отправляет его вниз по потоку. Если какой- либо модуль вниз по потоку может выполнить указанную команду, в ответ он направляет подтверждение в виде сообщения
M_IOCACK
. Если ни один из модулей и сам драйвер не смогли обработать команду, драйвер направляет вверх по потоку сообщение
M_IOCNAK
. При получении одного из этих сообщений головной модуль пробуждает процесс и передает ему результаты выполнения команды.

Перейти на страницу:
Комментариев (0)
название