Операционная система UNIX
Операционная система UNIX читать книгу онлайн
Книга посвящена семейству операционных систем UNIX и содержит информацию о принципах организации, идеологии и архитектуре, объединяющих различные версии этой операционной системы.
В книге рассматриваются: архитектура ядра UNIX (подсистемы ввода/вывода, управления памятью и процессами, а также файловая подсистема), программный интерфейс UNIX (системные вызовы и основные библиотечные функции), пользовательская среда (командный интерпретатор shell, основные команды и утилиты) и сетевая поддержка в UNIX (протоколов семейства TCP/IP, архитектура сетевой подсистемы, программные интерфейсы сокетов и TLI).
Для широкого круга пользователей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рассмотрим пример потока, модули 1 и 3 которого поддерживают управление потоком данных, а модуль 2 — нет. Другими словами, модуль 2 не имеет процедуры
<i>xx</i>service()
<i>xx</i>put()
mod1put(queue_t* q, mblk_t* mp) {
/* Необходимая обработка сообщения */
...
putq(q, mp);
}
Через некоторое время ядро автоматически запускает процедуру
<i>xx</i>service()
xxput()
#include <sys/stream.h>
int canput(queue_t* q);
Заметим, что canput(9F) проверяет заполненность очереди следующего модуля, реализующего механизм управления передачей данных, т.е. производящего обработку очереди с помощью процедуры
<i>xx</i>service()
<i>xx</i>service()
Описанная схема показана на рис. 5.20. Ниже приведен скелет процедуры
<i>xx</i>service()
Рис. 5.20. Управление потоком данных
mod1service(queue_t *q) {
mblk_t* mp;
while ((mp = getq(q)) != NULL) {
if (canput(q->q_next))
putnext(q, mp);
else {
putbq(q, mp);
break;
}
}
В этом примере функция getq(9F) используется для извлечения следующего сообщения из очереди, а функция putbq(9F) — для помещения сообщения в начало очереди. Если модуль 1 блокирует передачу, т.е. canput(9F) вернет "ложно", процедура
<i>xx</i>service()
<i>xx</i>service()
Пока существует возникшая блокировка передачи, затор будет постепенно распространяться вверх по потоку, последовательно заполняя очереди модулей, пока, в конечном итоге, не достигнет головного модуля. Поскольку передачу данных в головной модуль (вниз по потоку) инициирует приложение, попытка передать данные в переполненный головной модуль вызовет блокирование процесса [61] и переход его в состояние сна.
В конечном итоге, модуль 1 обработает сообщения своей очереди, и их число станет меньше нижней ватерлинии. Как только очередь модуля 1 станет готовой к приему новых сообщений, планировщик STREAMS автоматически вызовет процедуры
<i>xx</i>service()
Управление передачей данных в потоке требует согласованной работы всех модулей. Например, если процедура
<i>xx</i>put()
<i>xx</i>service()
Когда запускается процедура
<i>xx</i>service()
Драйвер
Драйверы и модули очень похожи, они используют одинаковые структуры данных (
streamtab
qinit
module_info
<i>xx</i>open()
<i>xx</i>put()
<i>xx</i>service()
<i>xx</i>close()
Во-первых, только драйверы могут непосредственно взаимодействовать с аппаратурой и отвечать за обработку аппаратных прерываний. Поэтому драйвер должен зарегистрировать в ядре соответствующий обработчик прерываний. Аппаратура обычно генерирует прерывания при получении данных. В ответ на это драйвер копирует данные от устройства, формирует сообщение и передает его вверх по потоку.
Во-вторых, к драйверу может быть подключено несколько потоков. Как уже обсуждалось, на мультиплексировании потоков построены многие подсистемы ядра, например, поддержка сетевых протоколов. В качестве мультиплексора может выступать только драйвер. Несмотря на то что драйвер в этом случае не является оконечным модулем (см., например, рис. 5.15), размещение драйверов существенным образом отличается от встраивания модулей.
Наконец, процесс инициализации драйверов и модулей различен. Функция
<i>xx</i>open()
Головной модуль
Обработку системных вызовов процессов осуществляет головной модуль. Головной модуль потока является единственным местом, где возможно блокирование обработки и, соответственно, процесса, в контексте которого осуществляется операция ввода/вывода. Головной модуль является внешним интерфейсом потока, и хотя его структура похожа на структуру обычного модуля, функции обработки здесь обеспечиваются самой подсистемой STREAMS. В отличие от точек входа в модуль или драйвер потока, реализующих специфическую для данного устройства обработку, функции головного модуля выполняют ряд общих для всех потоков задач, включающих: