-->

Роскон 2017. Атомный панк: война в космосе (СИ)

На нашем литературном портале можно бесплатно читать книгу Роскон 2017. Атомный панк: война в космосе (СИ), Лапиков Михаил Александрович-- . Жанр: Научная фантастика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Роскон 2017. Атомный панк: война в космосе (СИ)
Название: Роскон 2017. Атомный панк: война в космосе (СИ)
Дата добавления: 16 январь 2020
Количество просмотров: 72
Читать онлайн

Роскон 2017. Атомный панк: война в космосе (СИ) читать книгу онлайн

Роскон 2017. Атомный панк: война в космосе (СИ) - читать бесплатно онлайн , автор Лапиков Михаил Александрович

Современная фантастика, как правило, не может показать интересный космос ближнего прицела. Его не знают, его не представляют, его не способны интересно описать читателю. Между убогими орбитальными керосиненшлепперами и антигравитационными вундерштернраумшиффами зияет пустота, не заполненная никем и никак.

Между тем, основной массив рабочих документов военных и гражданских космических агентств шестидесятых не только вполне убедительно показывает, как выглядит и на что в действительности способен атомный космос, но и в подавляющем большинстве случаев давно рассекречен.

Что же на самом деле скрывают архивы?

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 ВПЕРЕД
Перейти на страницу:

Кроме того, у нейтронных бомб крайне мал срок жизни "на полке". Замену активного вещества требуется проводить раз в несколько лет, не реже. Всё ради того, чтобы в форме нейтронов излучалось хотя бы 40% энергии взрыва, а не 5%, как у обычного ядерного боеприпаса.

Именно по этой причине экипажи "Орионов" куда больше страдают от вибрации при орбитальных манёврах, чем от самого факта расстрела сотни-другой килотонн в быстрой последовательности.

Для военных это значит крайне печальную необходимость доставить значимый процент энергии подрыва к цели каким-то иным образом.

К счастью, его предоставляет всё тот же "Орион".

Работы над его приводом довольно быстро упёрлись в необходимость попадать как можно большим количеством испарённого рабочего тела в опорную плиту взрыволёта. Но если готовое техническое решение позволяет расширяющийся конус известного угла расхождения - этот угол можно изменять дальше, в соответствие уже боевой задаче.

Так на свет появилась гаубица касаба. Ядерный боеприпас направленного взрыва, рабочее тело которого передаёт вполне приличную часть энергии на действительно космические расстояния с космическими же скоростями.

Переход на полистирол и другие типы пластиков означал, что срабатывание ядерного импульсного устройства порождает струю плазмы с крайне малым углом расхождения и вполне космическими скоростями истечения.

Для атомной бомбы - порядка 102 км/с. Для термоядерной - до 3530 км/с. В целом, за конец второго тысячелетия получилось обсчитать систему, которая могла отправить в желаемом направлении до 85% энергии взрыва. Разумеется, дальше возникали проблемы с её передачей рабочему телу, и приближением фактических результатов к теоретически доступным. Проблемы достаточно серьёзные, в экспериментах не получалось взять даже 50 км/с. Но теоретически даже у малых зарядов достижима 50% эффективность.

Ценой дальнейшей потери эффективности, до чисел в 5-10% от энергии взрыва, угол расхождения реально уменьшить до 0,1 радиана. Пятикилотонное изделие, таким образом, при 10% эффективности могло бы передать на дальности порядка 1-2 тысяч километров достаточно энергии, чтобы сокрушить более 73 см алюминия.

То есть, в буквальном смысле этого слова пробить достаточно большой космический аппарат вдоль его длинной оси чуть ли не из конца в конец. Радиус пятна накрытия составлял порядка ста метров.

Увеличение мощности с 5 килотонн до 1 мегатонны при 5% эффективности и 20 сантиметрах радиуса блока рабочего тела на дистанции в 10 000 километров при тех же ста метрах радиуса позволяло бы сокрушить в одно удачное попадание даже закрытую противорадиационным щитом колонию О'Нила навылет чуть ли не с любого ракурса - вместе с почвой и жилой застройкой.

На ста тысячах километров эквивалент пробития всё ещё составлял 7,3 см алюминия в пятне радиусом около километра. Вполне достаточно, чтобы сделать неработоспособными практически любые гражданские сооружения на поверхности или орбите.

Но это для минимального угла расхождения.

А что если угол расхождения целенаправленно увеличить?

Ядерный дробовик противоракетной обороны, вот что!

Для расхождения в 0,17 радиан, 85% эффективности передачи энергии, и 10 килотонн, в перевёрнутом конусе высотой 16 км практически моментально (с человеческой точки зрения) сдувало любые космические объекты прочностью "Аполллона" или "Союза". В основании конуса площадью в 6,15 квадратных километров фактическая пробивная способность всё ещё составляла 5 мм алюминия.

Весь процесс занимал 16 миллисекунд с момента подрыва.

Но и это ещё не всё!

Более поздние эксперименты с формированием ударного ядра инициирующим ядерным взрывом дозволяли бы изделию в 0,1 килотонны (в форм-факторе близком "Дэви Крокету") при той же 85% эффективности отправить более-менее сплошной кинетический фрагмент к цели на скоростях до 3705 км/с

17 августа 1985 года в лабораторных условиях 1 кг вольфрам-молибденового сплава успешно разогнали до 70 км/с. Обсчёт на относительно современных компьютерах и лабораторное взрывное моделирование в теории доказали, что возможен разгон поражающих фрагментов полистирола термоядерным взрывом на скоростях до 3% световой.

Поражающие фрагменты массой около 8 миллиграмм на скорости даже в умеренные 100 км/с доставляли бы целям на дистанции 2000 километров эквивалент подрыва 10 грамм TNT, а их плотность составляла бы не меньше одной штуки на квадратный метр. Вполне достаточно, чтобы вести огонь по спутникам и ракетам. Конструкция достаточно скромной массы на 10 килотонн позволяла использовать один взрыв для одновременного формирования десятка разнонаправленных потоков.

Разумеется, это уже достаточно сложная автоматика, куда ближе к возможностям нашего раннего киберпанка, чем тёплого лампового атомпанка. Но учитывать её как теоретическую грань возможностей эпохи всё равно необходимо.

Тем более, что лучи смерти, которые наконец-то построили в металле, на примерно 1974-1976 годы выдали для фокусирующего изделия "Ромашка" и установки ХМД-1 коэффициент передачи 80% на дальности в 3 километра с суммарным расходом компонентов до 40 килограмм в секунду.

Ну, блин, охренеть теперь!

Но именно с этого момента начинается заря совсем другой эры. Современных информационных технологий, мощной электроники, станков-роботов, трёхмерной печати и других поводов радикально изменить правила игры человека с космосом.

Но про них - как-нибудь в другой раз...

4

18

1 2 3 4 5 6 7 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название