До и после Победы. Книга 1 (СИ)
До и после Победы. Книга 1 (СИ) читать книгу онлайн
Так что поле для ремонта танков было не то что большим - оно было огромным. И не только по собираемым на полях боя и дорогах-лесах-болотах. Часть танков с началом войны так и не вышли за ворота расположений - например, в 11м мехкорпусе "До 10-15 % танков в поход не были взяты, так как находились в ремонте" - изношенных танков в наших частях до войны хватало. Более того - даже отправленные для ремонта на заводы вглубь страны танки продолжали числиться на балансе воинской части, тогда как немцы такие танки вычеркивали из списков - становилось все более понятно, откуда такая разница в танках и почему она не сыграла - в том числе и из-за различий в учете танков, ну и что вообще считалось танком - те же штурмовые орудия у немцев считались не танками, а артиллерией, соответственно и не проходили в графе "Итого танков", как и многочисленные орудия, поставленные на гусеничные платформы - на единички и двойки, на польские, французские, чешские танки, на бронетранспортеры.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Причем, помимо добавления дополнительных рядов фурм, применялись и другие приемы экономии топлива. Например, воздух подают холодным, но могут ставить и рекуператоры - в стенках шахты или в трубе вагранки - так можно подогреть воздух до двухсот градусов, что сэкономит до 20% кокса. Но ваграночные газы - особенно при использовании топлив с высокой реакционной способностью, еще можно дожигать, нагревая вдуваемый воздух уже до 400 градусов - в этом случае экономия топлива составит уже 35%. Достаточно дорогой кокс можно частично заменить вдуванием угольной пыли - всего три процента пыли по весу от кокса снижает расход кокса на десять процентов и повышает производительность на 40%. Или природного газа - а это еще экономия кокса. Ну или генераторного, с которым можно сэкономить пару-тройку процентов. Короче - греть, греть и еще раз - греть все что только можно - и чтобы снизить расход основного топлива, и чтобы повысить производительность, а также и температуру выдаваемого металла - так он дольше может храниться до следующей операции без подогрева, что снижает напряженность процессов, а также повышается его текучесть, что хорошо сказывается на отливке в формы.
Причем во время плавки происходят изменения состава металла - тут и окисление, и выгорание углерода, и обратный процесс - науглероживание от соприкосновения с топливом, и даже насыщение серой - особенно интенсивно это происходит в нижней части вагранки, где уже расплавленный жидкий металл омывает куски топлива. Причем в начале плавки насыщение происходит особенно заметно - пока металл не вытянет серу из поверхностных слоев топлива. Потом-то насыщение серой падает, но в первых порциях содержание серы может подняться до полупроцента - и это тоже надо учитывать при дальнейшем использовании металла - можно ли его пускать в последующие процессы, или первые порции лучше отложить в сторону. В этом плане торфяной кокс или древесный уголь были предпочтительнее того же угольного кокса или антрацита, несмотря на их более эффективную работу по расплавлению металла - тут уже надо бы и посчитать - что выгоднее - использовать менее эффективное топливо либо тратить топливо, силы и время на удаление серы.
Вообще, плавка металла или его выплавка из руды - это обратимая реакция, и, как всякая обратимая реакция, она может проходить в обе стороны - либо с образованием соединений, либо - с образованием исходных элементов - направление зависит от температуры и концентрации элементов. Так, восстановление железа из руды - это, грубо говоря, разложение оксида железа на железо и кислород. Причем, чтобы разложить оксиды железа, необходимо затратить тепло - с увеличением температуры прочность оксидов снижается. Так, чтобы разложить окись железа II - FeO - требуется затратить 64 ккал на моль, то есть на 71,8 грамма оксида, на оксид железа III - Fe2O3 - требуется уже 197 ккал на моль, то есть на 159,7 грамма, а на четвертый - Fe3O4 - 266 ккал на 231,5 грамма. А образование из углерода и кислорода одного моля угарного газа даст 29 ккал на один моль весом 28 грамм, образование моля углекислого газа - уже 98 на 44 грамма - такую теплоту мы и получим, если сожжем 12 грамм углерода. Соответственно, в идеале для восстановления 55,8 грамм железа - а это чуть более семи кубических сантиметров - из окиси железа-2 надо затратить 44/64*12 = 8,25 грамм углерода - если в виде графита, то это 3,7 кубических сантиметра - ну, если он полностью соединится с кислородом, находящимся в окисле. А чтобы он соединился - окисел железа сначала надо разрушить, хотя бы немного. То есть нужно внешнее тепло. Или сжечь часть углерода, поставив в зону реакции внешний кислород.
Обратимая реакция при постоянной температуре в конце концов достигает равновесия - сколько образуется исходных веществ, столько же образуется и результатов реакции, и они не зависают в таком состоянии, а постоянно переходят друг в друга - исходные вещества реагируют и создают результаты реакции, а результаты - распадаются под действием тепла в исходные вещества. При образовании результатов тепло выделяется, при их разложении на исходные - тратится. То есть при некоторой температуре и условии, что объем замкнут, то есть отсутствуют потери или приход веществ, те же оксиды железа будут постоянно распадаться на чистое железо и кислород и соединяться в оксид железа. Повторю, это без внешнего воздействия. И чтобы сдвинуть эти обратимые реакции в нужную сторону - надо соответствующим образом воздействовать на них - например, постоянно вносить углерод, который будет соединяться с кислородом с выделением тепла, и удалять эти соединения, также удалять из зоны реакции и остающийся непрореагировавшим углерод обратно - другими словами, постоянно увеличивать концентрацию нужных веществ и уменьшать концентрацию ненужных. Естественно, сделать это довольно просто - результат окисления, то есть сгорания углерода - углекислый и угарный газы, которые могут естественным путем подниматься вверх. А результат восстановления железа - жидкий металл, который - также естественным путем - стекает вниз. То есть природа позаботилась о том, чтобы облегчить нужные процессы. Но, видимо, чтобы жизнь не казалась нам вечным праздником, она же подкинула в этот процесс несколько сложностей, борьба с которыми, собственно, и составляет секреты мастерства металлургов. И имя этим сложностям - примеси.
ГЛАВА 20.
Природа щедро замешала в руды и другие вещества все, что только оказалось под рукой и из всего, что только побывало рядом - осадочные породы, снесенные с соседних гор, потоки горячей воды, приносившие снизу десятки элементов, несвойственных данной местности, потоки магмы, вырывавшиеся в этом месте миллионы лет назад, да еще как следует перемешанные перемещениями коры, сдвигами и провалами - возможно, блендер сработал бы менее эффективно, чем природа. Кальций, магний, сера, фосфор, кремний, медь и цинк - все это и многое другое встречалось в рудах металлов в тех или иных пропорциях. Соответственно, все эти довески переходили и в металл. Какие-то из них были полезны, какие-то - вредны, третьи - не оказывали особого влияния на нужные человеку свойства металлов - и задачей металлургов было максимально избавиться от первых, сохранив, а при необходимости - и добавив - вторые. Ну а уж с третьими - как получится.
И в этом вопросе людям помогала химия, причем особая - высокотемпературная, так как большинство металлургических процессов протекают именно при высоких температурах, когда повышенная подвижность элементов позволяет как-то их тасовать. И, так как элементов в руде либо металле много, то и реакций протекает также немало, причем зачастую они протекают как в прямом направлении - с образованием соединений и элементов - так и в обратном - с образованием других, исходных, соединений и элементов. В какой-то момент количество прямых и обратных реакций устаканивается, и константа равновесия характеризует относительное содержание веществ в правой и левой части при таком установившемся равновесии. Причем при разных температурах константа будет различной - так, в реакциях окисления углерода, при более низких температурах в смеси будет больше молекул из правой части уравнения C + O2 = CO2 + теплота, при более высоких температурах - соотношение будет все более смещаться в сторону молекул из левой части. Можно сказать, что эта константа - отношение количества молекул левой части к количеству молекул в правой. Соответственно, она растет при росте температуры - то есть все меньше исходных веществ прореагирует между собой и превратится в окислы, и все больше окислов диссоциирует, то есть разложится на составные части.
Она же равна и упругости диссоциации, то есть равновесному парциальному давлению кислорода. Причем для разных веществ сродство с кислородом при одинаковой температуре будет различным - то есть при той же температуре константы равновесия для них различны. Так, молибден, никель, кобальт, вольфрам имеют меньшую упругость диссоциации их окислов, чем железо, а фосфор, хром, марганец, кремний, титан, алюминий, магний - большую. Соответственно, при той же температуре будет больше распадаться окислов, например, железа и, наоборот, будет больше образовываться окислов, например, алюминия, причем если эти реакции проходят в одном объеме, то алюминий будет забирать и часть кислорода, образовавшегося из окислов железа, соответственно, части восстановленного железа уже не с чем будет реагировать и оно останется в свободном состоянии. То есть алюминий является раскислителем для железа - веществом, которое будет забирать кислород, образующийся при распаде окислов железа, восстанавливая его. Как и фосфор, хром ну и т.д. А железо, соответственно, будет раскислителем для молибдена, никеля и так далее. Соответственно, если нам надо восстановить металл или защитить его от окисления при плавке, надо вводить раскислители - то есть добавлять в расплав, например, алюминий, или титан, или марганец - они будут превращаться в окислы, то есть переходить в шлаки. И, так как это - расходные материалы, то если необходимо, чтобы они присутствовали еще и в конечном сплаве, необходимо учитывать и эффект раскисления - то есть вводить их больше, чем требуется согласно конечному составу. А вот о молибдене, никеле, кобальте, вольфраме - можно не беспокоиться - они по-любому останутся в сплаве практически в неизменной концентрации, так как для них хватает раскислителей, которые заберут от них кислород, если тот все-таки присоединится к этим элементам.