До и после Победы. Книга 1 (СИ)
До и после Победы. Книга 1 (СИ) читать книгу онлайн
Так что поле для ремонта танков было не то что большим - оно было огромным. И не только по собираемым на полях боя и дорогах-лесах-болотах. Часть танков с началом войны так и не вышли за ворота расположений - например, в 11м мехкорпусе "До 10-15 % танков в поход не были взяты, так как находились в ремонте" - изношенных танков в наших частях до войны хватало. Более того - даже отправленные для ремонта на заводы вглубь страны танки продолжали числиться на балансе воинской части, тогда как немцы такие танки вычеркивали из списков - становилось все более понятно, откуда такая разница в танках и почему она не сыграла - в том числе и из-за различий в учете танков, ну и что вообще считалось танком - те же штурмовые орудия у немцев считались не танками, а артиллерией, соответственно и не проходили в графе "Итого танков", как и многочисленные орудия, поставленные на гусеничные платформы - на единички и двойки, на польские, французские, чешские танки, на бронетранспортеры.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
На самом деле все еще сложнее. Так, упругость диссоциации меняется и при изменении концентрации вещества. Например, при 1600 градусах и концентрации 0,2% фосфор, гадина, меняется с железом местами - теперь железо становится раскислителем для фосфора, и тот спокойно остается в расплаве в виде чистого вещества. И лишь с повышением концентрации или понижением температуры хотя бы до 1400 градусов фосфор становится раскислителем. Правда, слабеньким - упругость диссоциации его окислов идет на графиках лишь чуть ниже самого железа. В отличие от, например, кремния, который охотно возьмет на себя лишний кислород, как и хром, и марганец - те тоже подставят грудь вместо фосфора. Поэтому-то эту гадину так трудно совсем вывести из сплавов, тогда как "хорошие ребята" вылетают из них со свистом.
Ну, хорошо - это то, что происходит в самом сплаве. Но, скажем, при выплавке металла из руды или расплавлении металлических чушек угарный и углекислый газы взаимодействует с металлом и его окислами. И есть такая вредная реакция, как реакция оксида железа-3 с угарным газом - при этом образуется железо и углекислый газ с выделением тепла. Так вот - эта реакция обратима. И если в домнах, при выплавке металла из руды, углекислого газа немного, то в пламенных печах - типа тех же мартенов - и вагранках - углекислого газа много, так как там много кислорода - иначе не получим пламени, которое и нагревает металл. Соответственно, углекислый газ распадается на угарный газ и кислород, и последний окисляет железо - происходит так называемый угар железа. Да и сера в виде оксида, присутствующая в печных газах, тоже распадается на оксид и серу - в результате получаем сульфид железа и оксид железа - металл угорает и насыщается серой.
И это еще не все. Свойства стали определяются содержанием в ней углерода. Если пламя малокислородное, то в нем присутствует много угарного газа - соответственно, металл науглероживается с образованием карбида железа - это стандартный процесс для выплавки металла из руды. А в плавильных печах пламя окислительное, происходит выгорание углерода, то есть обезуглероживание - состав стали меняется. Карбиды железа вообще хрупкие штуки - так, если перегреть резец, то его карбид начнет окисляться - получим оксид железа и углекислый газ. Поэтому при резке металлов требуется охлаждение, и чем скоростнее резка - тем больше должно подаваться охлаждающей жидкости.
И, чтобы защитить металл от выгорания и обезуглероживания, а также вытащить из него ненужные примеси, нужно образовывать при выплавке металла или его переплавке шлаки. Шлаки состоят из оснований - окислов кальция, магния, марганца и т.п., кислот - окислов кремния, фосфора, хрома. И шлакообразование позволяет нейтрализовать кислотные окислы основными - образуются соли, которые и называются шлаками. Соответственно, чтобы выжать из сплава примеси, скажем, фосфора, надо ввести в шихту кальций, магний, марганец - и т.п. - они растворятся в сплаве, соединятся с кислыми окислами и всплывут на поверхность.
Или - десульфация, то есть удаление серы. Чтобы ее удалить, в сплав надо ввести оксид кальция - он соединяется с сульфатами железа и марганца, отнимает у них серу и отдает свой кислород - вместо сульфатов получаем оксиды железа и марганца с выделением тепла. А затем эти оксиды восстанавливаются до металла угарным газом, на что тепло уже затрачивается. То же произойдет, если ввести соду, только тепла выделится еще больше. Причем все эти процессы происходят именно в шлаке, то есть в том пространстве, где присутствует оксид кальция. Соответственно, когда очередные молекулы сульфатов железа восстанавливаются до оксидов железа, концентрация сульфата в этой области падает, и туда втягиваются новые порции сульфатов железа - пока хватает еще непрореагировавшего оксида кальция или сульфата железа. А пока получающийся оксид железа не восстановится угарным газом, в этой области присутствует повышенная концентрация этого оксида, который препятствует новым реакциям - его вокруг и так много. Видимо, продукты реакции как бы давят влево, сдвигая равновесие реакции в сторону исходных веществ, и, если с продуктами ничего не делать, реакция так и застынет на одном месте - да, элементы и молекулы будут перебегать справа-налево и обратно, но их соотношение вместится влево.
При дефосфоризации идут несколько иные реакции, в которых оксид железа, наоборот, полезная вещь. Там фосфор реагирует с оксидом железа с образованием свободного железа и оксида фосфора. А потом этот оксид еще раз реагирует уже с другой молекулой оксида железа и образуется фосфат закиси железа. И вот, добравшись до молекул засыпанного в расплав оксида кальция, это вещество реагирует уже с этим оксидом - он вытесняет оксид железа из фосфата - получается фосфат оксида кальция и оксид железа. Соответственно, чем будет выше концентрация оксида железа и оксида кальция - тем эффективнее будет дефосфоризация.
Но это противоречит процессу десульфации, когда оксид кальция задействуется для соединения с серой, а получающийся оксид железа замедляет десульфацию, пока не будет восстановлен угарным газом до металла. Поэтому обычно сначала проводят дефосфоризацию, а потом - десульфацию. То есть набухают оксида кальция, увеличенным дутьем установят окислительную среду, чтобы не восстанавливался оксид железа - его становится больше, то есть его повышенная концентрация препятствует переходу серы от железа к кальцию, т.к. в этой реакции образуется тот же оксид железа, а его и так много - реакция идет гораздо медленнее. Зато этот избыток оксида железа активно окисляет фосфор, затем другие молекулы оксида железа присоединяют получившийся оксид фосфора - и уже затем передают его оксиду кальция. И только и остается что сгрести с поверхности расплава получившийся черный шлак, когда он весь поднимется на верх. Ну а затем уже можно выполнять и десульфацию - набухать того же оксида кальция, но установить восстановительную среду, когда много угарного газа - теперь получающийся оксид железа будет все время восстанавливаться до железа, что не будет препятствовать соединению сульфатов железа с оксидом кальция - получаем уже другой шлак, в котором много серы, а не фосфора.
Это можно проделывать в томасовских конвертерах, мартенах и электрических печах с основной футеровкой, то есть футеровкой, состоящей из оснОвных окислов - магния и тому подобного. В вагранках с кислой футеровкой и бессемерах это проделать невозможно. Собственно, бессемеровский процесс - это и есть процесс продувки воздухом при наличии кислой футеровки, то есть футеровки, составленной из кислых окислов типа динаса, содержащего более 90% оксида кремния - кислые окислы кремния просто не соединятся с кислыми же окислами фосфора и серы, и, более того, кислая футеровка запросто соединится с оксидом кальция, так что, сколько его ни засыпай - толку не будет - только разъест футеровку, которая вся тупо перейдет в шлак. Поэтому бессемеровский процесс получения стали из чугуна не подходит для чугунов, богатых фосфором и серой. Для них подходит томасовский процесс - та же продувка воздухом в таких же по конструкции конвертерах, отличающихся только футеровкой - вместо динаса, состоящего почти полностью из оксида кремния, она делается из доломита - карбонатов кальция и магния. Ну а тут и сама футеровка содержит кальций, и его можно спокойно добавлять в виде оксидов - кроме вредных примесей в металле ему больше не с кем соединяться - кремния-то нет. Правда, как я понял, названия бессемеровский и томасовский конвертер различаются - ну, помимо собственно футеровки - только тем, что эти процессы открыли, разработали или запатентовали разные люди. Запатентовал бы один - и процесс назывался бы одинаково, как, например, мартены - другой способ выплавки или переплавки стали - в них не воздух продувается через металл, а раскаленные горючий газ и воздух вдуваются в пространство над ванной. И они могут иметь футеровку как кислую, из оксиде кремния, так и основную - из оксидов магния и кальция. Соответственно, в них можно выплавлять сталь любого состава, независимо от наличия или отсутствия фосфора и серы.