-->

Российская Академия Наук

На нашем литературном портале можно бесплатно читать книгу Российская Академия Наук, Турчин Алексей-- . Жанр: Публицистика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Российская Академия Наук
Название: Российская Академия Наук
Дата добавления: 16 январь 2020
Количество просмотров: 303
Читать онлайн

Российская Академия Наук читать книгу онлайн

Российская Академия Наук - читать бесплатно онлайн , автор Турчин Алексей

Совместный проект

Центра цивилизационных и региональных исследований

Института Африки РАН и

Российского Трансгуманистического Движения.

Москва 2008

СЕРИЯ «ДИАЛОГИ О БУДУЩЕМ»

Т.2

Ответственные редакторы:

Валерия Прайд

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Alpert и Raiffa (1982) задали испытуемым 1000 вопросов по общеизвестным темам, подобных приведённым выше. Оказалось, что 426 подлинных значений лежали за пределами 98% интервалов уверенности, данных испытуемыми. Если бы испытуемые были правильно настроены, было бы только 20 сюрпризов. Иными словами, события, которым испытуемые приписывали вероятность 2%, случались в 42.6%.

Другую группу из 35 испытуемых попросили оценить 99.9% верхние и нижние границы уверенности. Они оказались неправы в 40% случаев. Другие 35 субъектов были опрошены о максимальных и минимальных значениях некого параметра и ошиблись в 47% случаев. Наконец, четвёртая группа из 35 субъектов должна была указать «невероятно малое» и «невероятно большое» значение параметра; они ошиблись в 38% случаев.

Во втором эксперименте новой группе испытуемых был предоставлен первый набор вопросов вместе с ответами, рейтингом оценок, с рассказом о результатах экспериментов и разъяснением концепции калибровки – и затем их попросили дать 98% интервалы уверенности для новой группы вопросов. Прошедшие подготовку субъекты ошиблись в 19% случаях, что являет собой значительное улучшение их результата в 34% до подготовки, но всё ещё весьма далеко от хорошо откалиброванного результата в 2%.

Подобные уровни ошибок были обнаружены и у экспертов. Hynes и Vanmarke (1976) опросили семь всемирно известных геотехников на предмет высоты дамбы, которая вызовет разрушение фундамента из глинистых пород, и попросили оценить интервал 50% уверенности вокруг этой оценки. Оказалось, что ни один из предложенных интервалов не включал в себя правильную высоту. Christensen-Szalanski и Bushyhead (1981) опросили группу врачей на предмет вероятности пневмонии у 1531 пациента с кашлем. В наиболее точно указанном интервале уверенности с заявленной достоверностью в 88%, доля пациентов, действительно имевших пневмонию, была менее 20%.

Lichtenstein (1982) производит обзор 14 исследований на основании 34 экспериментов выполненных 23 исследователями, изучавшими особенности оценки достоверности собственных выводов людьми. Из них следовал мощнейший вывод о том, что люди всегда сверхуверены. В современных исследованиях на сверхуверенность уже не обращают внимания; но она продолжает попутно проявляться в почти каждом эксперименте, где субъектам позволяется давать оценки максимальных вероятностей.

Сверхуверенность в большой мере проявляется в сфере планирования, где она известна как ошибочность планирования. Buehler (1994) попросил студентов-психологов предсказать важный параметр – время сдачи их дипломных работ. Исследователи подождали, когда студенты приблизились к концу своих годичных проектов и затем попросили их реалистично оценить, когда они сдадут свои работы, а также, когда они сдадут свои работы, если всё пойдёт «так плохо, как только может». В среднем, студентам потребовалось 55 дней, чтобы завершить свои дипломы, на 22 дня больше, чем они ожидали, и на 7 дней больше, чем они ожидали в худшем случае.

Buehler (1995) опросил студентов о времени, к которому студенты на 50% уверены, на 75% уверены и на 99% уверены, что они закончат свои академические проекты. Только 13% участников закончили свои дипломы к моменту, которому приписывали 50% вероятность, только 19% закончили к моменту 75% оценки и 45% закончили к 99% уровню. Buehler et. al. (2002) пишет «результаты выхода на уровень 99% достоверности особенно впечатляющи. Даже когда их попросили сделать наиболее консервативное предсказание, в отношении которого они чувствовали абсолютную уверенность, что его достигнут, всё равно уверенность студентов в их временных оценках намного превосходила их реальные результаты»». Конец цитаты.

Итак, есть серьёзные основания считать, что мы должны крайне расширить границы уверенности в отношении вероятностей глобальных рисков, чтобы искомая величина попала внутрь заданного интервала.

Обозначим величиной N степень расширения интервала уверенности для некой величины A следующим образом: (A/N; A*N). Например, если мы оценивали нечто в 10%, и N=3, то интервал будет (3%; 30%). Каково должно быть N для глобальных рисков, пока сказать трудно, но мне кажется разумным выбрать N=10. В этом случае, мы с одной стороны, получаем очень широкие интервалы уверенности, в которые искомая величина, скорее всего, попадёт, а с другой стороны, эти интервалы будут различны для различных величин.

Другой способ определения N – изучить среднюю ошибку, даваемую экспертами в их оценках и ввести такую поправку, которая бы покрывала обычную ошибочность мнений. То, что в проектах ядерного реактора и космического челнока реальное значение N было между 40 и 100, говорит о том, что, возможно, мы слишком оптимистичны, когда принимаем его равным 10. Вопрос этот нуждается в дальнейшем изучении. Это обобщение не снижает ценности таких вычислений, поскольку разница между некоторыми рисками может оказаться в несколько порядков. А для принятия решения о важности противостоянии той или иной опасности нам нужно знать порядок величины риска, а не риск с точностью до второй цифры после запятой, как это можно и нужно в страховании и финансовых рисках.

Итак, мы предполагаем, что вероятность глобальных катастроф можно оценить в лучшем случае с точностью до порядка, причём точность такой оценки будет плюс-минус порядок, и что такого уровня оценки достаточно, чтобы определить необходимость дальнейшего внимательного исследования и мониторинга той или иной проблемы. (Очевидно, что по мере того, как проблема будет приближаться к нам по времени и конкретизироваться, мы сможем получить более точные оценки в некоторых конкретных случаях, особенно в легко формализуемых задачах типа пролёта астероидов и последствий ядерной войны). Похожими примерами шкал риска являются Туринская и Палермская шкалы риска астероидов.

В силу сказанного кажется естественным предложить следующую вероятностную классификацию глобальных рисков в XXI веке (рассматривается вероятность на протяжении всего XXI века при условии, что никакие другие риски на неё не влияют):

1) Неизбежные события. Оценка их вероятности - порядка 100 % в течение всего века. Интервал: (10%; 100%) (Иначе говоря, даже то, что нам кажется неизбежным, может быть просто весьма вероятным.)

2) Весьма вероятные события – оценка вероятности порядка 10 %. (1%; 100%)

3) Вероятные события – оценка порядка 1 %. (0,1%; 10%)

4) Маловероятные события – оценка 0,1 %. (0,01%; 1%)

5) События с ничтожной вероятностью – оценка 0,01 % и меньше. (0%; 0,1%)

Пунктами 4) и 5) мы могли бы пренебречь в нашем анализе, поскольку их суммарный вклад меньше, чем уровень ошибок в оценке первых трёх. Однако на самом деле ими пренебрегать не стоит, так как возможна значительная ошибка в оценке рисков. Далее, важно количество событий с малой вероятностью. Например, если возможно несколько десятков разных сценариев с вероятностью (0,1%; 10%), то всё это множество имеет твёрдый интервал (1%; 100%). К категории 1 относится только тот факт, что в течение XXI века мир существенно изменится.

Должна ли сумма вероятностей отдельных глобальных рисков не превышать 100%? Предположим, что мы отправляем в поездку неисправный автомобиль. Вероятность того, что он потерпит аварию из-за того, что у него проколота шина, равна 90%. Однако, предположим, что у него, помимо этого, неисправны тормоза, и если бы шины были исправны, то вероятность аварии от неисправности тормозов тоже бы составляла 90%. Из этого примера видно, что вероятность каждого глобального риска, вычисляемая в предположении (очевидно, ложном), что нет других глобальных рисков, действующих в то же самое время, не может просто складываться с вероятностями других глобальных рисков.

В нашем примере шансы машины доехать до конца пути равны 1%, а шансы, что причиной аварии стал каждый из двух рисков – 49,5%. Предположим, однако, что первые полпути дорога такова, что авария может произойти только из-за неисправных шин, а вторую – только из-за неисправных тормозов. В этом случае до конца доедет тоже только 1% машин, но распределение вкладов каждого риска будет иным: 90% машин разобьётся на первом участке дороги из-за шин, и только 9% на втором из-за неисправных тормозов. Этот пример показывает, что вопрос о вероятности того или иного вида глобальной катастрофы некорректен, пока не указаны точные условия.

Перейти на страницу:
Комментариев (0)
название