Репортаж с ничейной земли. Рассказы об информации
Репортаж с ничейной земли. Рассказы об информации читать книгу онлайн
Как измерить количество новостей, принятых по телеграфу? В каком виде передаются «записи» о наследственных признаках? Как возникает в природе живая материя? Как рождается мысль?
Чтобы найти ответы на эти вопросы, читатель должен пройти вместе с автором и героями киигн по улицам условного Нового Города и по просторам Ничейной земли. Эта книга поможет ему понять, почему методы, рожденные техникой связи, нашли применение в биологии и психологии и как удалось измерить одними и теми же единицами информацию в клетке, в кристалле н на страницах газет.
Обсуждаются также проблемы, которые еще предстоит решить современной науке с помощью теории информации.
Автор не обходит молчанием спорные вопросы. Читатель примет участие в горячих дискуссиях, познакомится с разными точками зрения и вооружится новыми знаниями, помогающими глубже понять окружающий нас материальный мир.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Математика смотрит на вещи просто. Ей все равно, что происходит в мире: идет ли дождь, или молекулы бьют по стенке сосуда, передаются ли телеграфные тексты, или болельщики едут на ответственный матч. Для нее молекула или буква, капля дождя или пассажир метрополитена - все едино, все является примером случайных событий, и все события соблюдают один закон. Чем больше число случайных событий, тем строже он выполняется. Несквлько молекул, заключенных в микроскопическом объеме, вовсе не подчиняются этому закону. Но в каждом кубическом сантиметре объема находится так много молекул газа, что закон больших чисел соблюдается ими с удивительной строгостью. Ученые подсчитали, что случайное отклонение давления в одном кубическом сантиметре всего на 1 процент может произойти не чаще, чем один раз за 101014 секунд. Чтобы представить, сколько времени содержит в себе это трехэтажное число, достаточно сказать, что 1010² секунд уже составляют миллионы миллиардов лет!
Так в окружающем нас материальном мире действует один из основных законов диалектики, согласно которому в форме случайностей проявляется необходимость. Необходимой, неизбежной является равномерность давления газа, обусловленного случайными ударами молекул о стенки сосуда, определенное число повторений какой-то буквы, ровный слой воды на асфальте от случайных капель дождя.
Не все ученые прошлого века признавали эту необходимость. Даже Карл Пирсон, который не пожалел времени для того, чтобы воочию убедиться в действии этого закона, подбрасывая монету 24 тысячи раз, все же так и не признал объективной необходимости различных явлений, утверждая, что «необходимость» принадлежит лишь «к миру понятий». Что ж, мы можем только посочувствовать тяжелому положению тех ученых-идеалистов, которые, сталкиваясь с законами материального мира, вместо того чтобы признать эти законы, предпочитают не верить своим глазам. Общие методы исследования массы случайных событий помогают науке все глубже и глубже проникать в тайны природы, познавать, каким законам подчиняется мир.
Вот почему в мире молекул, казавшемся нам лишь нагромождением беспорядка, обнаружились строгие закономерности, отраженные в физических формулах и кривых. Оказывается, все, что приключилось с нами в облаке газа, Максвелл еще в прошлом веке описал одним уравнением и одной кривой.
Смысл кривой Максвелла довольно прост. Если всю площадь, расположенную между осью С и кривой Максвелла, принять за 1, то площадь заштрихованной полоски составит 0,07. Это значит, что вероятность движения любой частицы со скоростью большей, чем С1, но меньшей, чем С2, равна 7 процентам. Таким образом, кривая Максвелла дает возможность увидеть, как среди огромного количества одновременно движущихся молекул распределяются вероятности скоростей. Есть много молекул, у которых скорость близка средней скорости, и лишь небольшое количество молекул движется с очень большими или очень малыми скоростями.
Кажется, мы начинаем привыкать к необычным условиям «жизни» этого мира. По-прежнему мечется из стороны в сторону наша маленькая батисфера, но теперь мы зиаем, что в этом мире иначе быть и не может, и потому спокойно рассуждаем о кривых Максвелла и о тех общих законах, которым подчиняются большой и маленький миры.
Но надо все же подумать о том, как выбраться из этого хоровода. Нельзя же болтаться в нем бесконечно! Сколько бы ни носились мы здесь в своей фантастической батисфере, мы не узнаем больше ничего нового: пройдут часы, дни и столетия, а молекулы будут по-прежнему, подчиняясь кривой Максвелла, разыгрывать свой нескончаемый матч. И вдруг...
Мы даже не успели толком понять, что произошло. Какое грандиозное событие разом преобразило этот равнодушный, устойчивый мир? Мы успели только заметить, что все окружающие нас частицы внезапно устремились в одном направлении. Спеша и толкая друг друга, они неслись все дальше, к какой-то неведомой цели. Гонимая их толчками, наша маленькая батисфера в один миг пересекла все пространство и со стремительной скоростью вырвалась из сосуда.
Наконец-то! Теперь можно выйти из батисферы и обрести свой привычный размер. Кстати, и подумать, что же все-таки произошло? А произошло следующее: отверстие, через которое мы проникли в сосуд, имело особый клапан. Этот клапан открылся, когда о него ударилась батисфера, и тут же захлопнулся, потому что огромное количество молекул разом налетело на него с внутренней стороны. Мы оказались в замкнутом объеме сосуда. И мы действительно могли бы болтаться в нем долгие годы, если бы перед началом путешествия не приказали специальному автомату открыть клапан в определенный момент. Разом нарушились все законы. Теперь уже нет одинакового давления на стенки сосуда, нет движения, изображаемого кривыми Максвелла, все «жители» охвачены одним порывом - они стремятся как можно скорее достигнуть отверстия, которое открыл наш спасительный автомат. Что заставляет их неудержимо стремиться к нему?
Разность давлений. Внутри сосуда оно выше, чем за его пределами. Микромир не терпит «несправедливости». Его «жители» считают, что должен быть заселен равномерно весь доступный для них объем. Пока стенки мешали им выйти за границы сосуда, они жили в «состоянии равновесия», и именно это состояние подробно исследовал и описал уравнениями и кривыми Максвелл. Но вот открылось отверстие, образовалась разность давлений, и равновесие сразу нарушилось. Молекулы получили возможность стремительно вылетать из отверстия. И будут вылетать до тех пор, пока давление внутри сосуда не станет равным давлению атмосферы. Тогда наступит новое равновесие, и молекулы станут снова водить свои хороводы, подчиняясь закону, который открыл Максвелл.
Значит, не все события, происходящие в облаке газа, можно описать кривыми Максвелла. Есть у газа еще одно очень важное свойство: выведенный из равновесия, он стремится вернуться в это состояние, и молекулы до тех пор не будут подчиняться кривой Максвелла, пока в границах отведенного им пространства не «восстановится справедливость», пока давление не станет ровным во всех частях. Для того чтобы до конца понять природу этого свойства, и понадобилась энтропия.
История энтропии
Термин «энтропия» родился в середине прошлого века. Его ввел в физику немецкий ученый Клаузиус, и с его легкой руки условный значок энтропии завоевал себе прочное место в длинном ряду термодинамических формул. Формулы эти говорили о том, что при нагревании тела увеличивается его температура, а также давление или объем.
Все это не было новостью. Еще задолго до появления формул термодинамики эти факты были установлены опытным путем. Новостью было то, что при нагревании тела возрастает его энтропия. Усвоить это было не так-то легко. Если увеличение объема можно было увидеть воочию, а температуру и давление буквально «пощупать руками», то энтропия долгое время оставалась загадочной и непостижимой «функцией состояния» различных тел.
Энтропия будет возрастать до тех пор, пока полученное тепло не распространится по всему телу равномерно, - так говорили формулы, и им приходилось верить.
Однако слепая вера - плохой помощник ученого даже в том случае, когда ее подтверждают экспериментальные данные и математический аппарат. Нашлись люди, которые захотели «увидеть» и энтропию. Если она является «функцией состояния», значит ее изменение должно быть связано с изменением состояния тела. Наблюдал ли кто-нибудь это изменение? Нет. Что ж, ничего удивительного. Невидимое изменение состояния тела - это изменение его микроструктуры. Выдающийся австрийский физик Людвиг Больцман был первым ученым, вскрывшим природу энтропии и ее связь с микроскопическим состоянием тел.
Энтропия возрастает тогда, когда происходят микропроцессы, приводящие к равновесному состоянию газа. А равновесие газа - это уже знакомый нам хаотический танец частиц.
Выходит, не зря пошли мы на риск, отправившись в путь на маленькой батисфере: гораздо легче понять ход рассуждений Больцмана тому, кто хотя бы однажды «повидал» этот мир. Вспомним, как мы неслись к открытому клапану, подхваченные толпой торопливых частиц. Это был как раз тот момент, когда в сосуде нарушилось равновесное состояние газа. В равновесном состоянии давление должно быть равным во всех частях. А здесь нарушена «справедливость»: молекулы с наружной стороны клапана чувствуют себя гораздо свободнее тех, что внутри. Но этого не терпит природа: пока не уравняется давление, молекулы будут со стремительной скоростью вылетать из сосуда вон.