Популярная аэрономия
Популярная аэрономия читать книгу онлайн
Впервые в популярной форме, рассказывается об аэрономии - молодой науке, изучающей структуру верхней атмосферы Земли и протекающие там физические и химические процессы. Дается описание современных представлений о структуре атмосферы и ионосферы на высотах 50 - 500 км и проблем, связанных с различными вариациями атмосферных и ионосферных параметров. Подробно излагается современная концепция цикла процессов образования и гибели заряженных частиц, который определяет существование ионосферы.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В предыдущих главах мы уже видели, как важно знать ионный состав ионосферы на разных уровнях и как много дали масс-спектрометрические измерения этого состава в Е- и F-области. Ну а что же в D-области? Та же картина. Различные типы масс-спектрометров, успешно применяемые выше 100 км, ниже работать не могут. Они "захлебываются" в плотной нейтральной среде и либо совсем выходят из строя, либо отказываются измерять нужные параметры.
Чтобы спасти положение, придумали, как "обмануть" масс-спектрометры и заставить их работать на малых высотах. Перед анализатором прибора стали помещать камеру с вакуумным насосом. Насос непрерывно откачивает воздух, поступающий из атмосферы, окружающей ракету, и создает в камере пониженное давление, которое масс-спектрометр способен "пережить". Прибор работает и дает сведения об относительном содержании различных ионов в окружающем газе, но, естественно, не об их абсолютном количестве.
Ясно, что описанная процедура делает масс-спектрометрические эксперименты на малых высотах значительно более сложными и громоздкими, чем на высотах Е- и F-области. Именно поэтому активное исследование ионного состава D-области задержалось по сравнению с более высокими областями почти на 10 лет.
Масс-спектрометрический экспериментНо это еще не все. Специфика самого ионного состава области D вносит дополнительные трудности в процесс его измерений. Сложные положительные ионы-связки, играющие, как выяснилось, большую роль в физике D-области, очень неустойчивы. Образно говоря, они могут развалиться от малейшего прикосновения. А ведь прикосновение ракеты, налетающей на неподвижный газ со скоростью 1 км в секунду, трудно назвать "малейшим". Возникла опасность, что те ионы, которые масс-спектрометр измеряет в нижних слоях,- не что иное, как жалкие осколки значительно более сложных (и соответственно более громоздких и неустойчивых) ионов-связок, реально существующих в атмосфере и распадающихся при встрече с прибором под действием различных факторов (ударная волна движущейся раке ты, электрическое поле прибора и т. д.). Значит, одной лишь откачной системы мало - нужны еще специальные ухищрения, чтобы избавиться от разрушения сложных ионов.
А отрицательные ионы. Ведь проблемы их измерения не стояло при исследованиях состава ионосферы выше 100 км. Значит, здесь для масс-спектрометристов вообще "terra incognita". Да плюс те же самые трудности с возможным распадом сложных отрицательных ионов-связок на более простые в самом процессе измерений.
Нужно ли, учитывая все это, удивляться, что в области D мы далеки от того положения с исследованием ионного состава, которое имеется в других ионосферных областях.
Итак, сложность получения экспериментальной информации о строении и составе ионосферы ниже 100 км очевидна. Несмотря на это, естественно, делаются все новые и новые попытки изучать D-область различными методами. Используют радиоволны, излученные с ракеты, модифицируют идею поглощения радиоволн, усовершенствуют зондовую методику, применяют методы, основанные на тонких эффектах распространения радиоволн, таких, как перекрестная модуляция, частичное отражение, взаимодействие с ионосферной плазмой сверхдлинных радиоволн и т. д. И нет недостатка в профилях, скажем, электронной концентрации, измеренных в разных местах различными приборами в разных условиях. Но беда состоит в том, что, получая в разных измерениях сильно отличающиеся результаты, мы каждый раз должны решать, является ли это отражением реальной изменчивости самой D-области или результатом ошибочности одного из примененных методов.
Ищем источник ионизации
"Одинокой области D нужен приличный источник ионизации для воздействия в дневное время. Обращаться по адресу: Земля, ионосфера, высота 65 - 85 км". Так, вероятно, должна выглядеть проблема, если перевести ее на язык доски объявлений.
Ну а если говорить серьезно, то поиски источника ионизации в D-области доставили исследователям немало хлопот.
Мы уже знаем, что солнечное ультрафиолетовое излучение с λ<1000 Å не проникает в атмосферу ниже 120 - 140 км. Оно является главной причиной существования основной части ионосферы. Его ближайший помощник - рентген с длиной волны 10 - 100 Å - ионизует нейтральные частицы на высотах 90 - 120 км, обеспечивая тем самым существование области Е. Но и он не может пробиться сквозь толщу нейтральных частиц на меньшие высоты.
Остается еще более коротковолное излучение с λ<10 Å. Кванты этого излучения благодаря своей высокой энергии способны пробиться несколько глубже в толщу атмосферы и вызвать ионизацию на 80 - 90 км. Но и в этом случае интенсивность очень резко падает с уменьшением высоты из-за сильного поглощения. Скорость ионизации, которую может обеспечить рентген, составляет на высоте 80 км 0,004%, или 4×10-5 скорости ионизации на высоте 100 км, а на 70 км эта величина уменьшается до 10-7. Реально оказывается, что эта скорость ионизации способна обеспечить лишь образование самой верхней части области D, лежащей выше 85 км. Очевидно, если бы за ионизацию D-области отвечал только рентген, то эта глава просто не понадобилась бы, так как не было бы ни проблем, ни загадок, ни самой D-области. Но она есть, со всеми своими проблемами. Значит, есть и другие источники, ее питающие, помимо рентгена. Один из таких источников - галактические космические лучи. Последние суть ядра тяжелых элементов прилетающие из просторов галактики и вторгающиеся в атмосферу. Энергия этих частиц столь велика, что они свободно достигают поверхности Земли или, во всяком случае, низколежащих плотных слоев. Ни о каком поглощении космических лучей на ионосферных высотах, которые интересуют нас, нет и речи.
Коротковолное излучениеКазалось бы, Космические лучи - кандидат номер один на роль создателя области D. Но и у них есть свои трудности. Поток космических лучей мал. А посему требуется много нейтральных частиц, чтобы произошло достаточное число актов ионизации (напомним, что q пропорционально потоку частиц n и концентрации нейтралов [М]). Значит, вклад космических лучей в ионизацию в атмосфере будет возрастать вниз и падать вверх. Оценки показывают, что предельная высота, на которой этот вклад еще существен,- 65 км. Ниже вся ионизация в атмосфере обязана своим происхождением именно космическим лучам. Выше... Выше они бессильны, так как мала плотность нейтральных частиц.
Итак, источники ионизации в D-области выше 85 км и ниже 65 км известны. А кто же отвечает за поддержание ионизации в основной части D-области между 65 и 85 км? Вот на этом-то "участке фронта" и разгорелись основные бои.
Для решения проблемы нам нужен источник (излучение или потоки частиц), который без существенного поглощения проникает на высоты 70 - 80 км. Солнечное излучение короче 1000 Å мы уже рассмотрели. Оно не может проникнуть так глубоко в атмосферу. Излучение с λ>1000 Å? Но оно маломощно для наших целей. Один квант этого излучения несет слишком мало энергии (меньше 12 эВ), чтобы оторвать электрон от молекулы азота или кислорода, из которых на 99% состоит атмосфера на этих высотах. (Напомним, что потенциал ионизации 02 и N2 составляет соответственно 12 и 15 эВ). Значит, единственная надежда - поиск не основной, малой составляющей, которая бы не была столь привередлива, как азот и кислород, и поддалась бы воздействию более мягкого излучения. Такая компонента нашлась. Это окись азота NO, потенциал ионизации которой равен 9,6 эВ. Разница с 02 вроде бы и не очень большая, но какая принципиальная! Чтобы оторвать электрон от нейтральной молекулы NO, хватает энергии кванта излучения в линии Lα (λ =1216 Å). Один квант этого излучения несет энергию около 10 эВ (т. е. чуть-чуть больше, чем необходимо для ионизации молекулы NO, но совершенно недостаточно для ионизации молекулы 02 или тем паче N2), причем общее количество этих квантов, или интенсивность линии, очень велико и составляет около 3×1011 на квадратный сантиметр в секунду. Это большое число. Оно больше, чем полное количество квантов в области длин волн короче 1000 Å, ответственное, как мы знаем, за ионизацию всей ионосферы выше 90 - 100 км. Никаких неприятностей с поглощением у Lα тоже нет. Это излучение проникает почти без поглощения в столь волнующую нас область 70-80 км.