-->

Популярная аэрономия

На нашем литературном портале можно бесплатно читать книгу Популярная аэрономия, Данилов А. Д.-- . Жанр: Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Популярная аэрономия
Название: Популярная аэрономия
Дата добавления: 16 январь 2020
Количество просмотров: 127
Читать онлайн

Популярная аэрономия читать книгу онлайн

Популярная аэрономия - читать бесплатно онлайн , автор Данилов А. Д.

Впервые в популярной форме, рассказывается об аэрономии - молодой науке, изучающей структуру верхней атмосферы Земли и протекающие там физические и химические процессы. Дается описание современных представлений о структуре атмосферы и ионосферы на высотах 50 - 500 км и проблем, связанных с различными вариациями атмосферных и ионосферных параметров. Подробно излагается современная концепция цикла процессов образования и гибели заряженных частиц, который определяет существование ионосферы.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 19 20 21 22 23 24 25 26 27 ... 38 ВПЕРЕД
Перейти на страницу:

Так выглядят на сегодня проблемы области F2. Как мы уже говорили, это область ионосферы, где одна фотохимия не может нести ответственности за все явления. Чтобы понять особенности поведения заряженных частиц, следует привлечь целый ряд совсем других процессов: ам-биполярную диффузию, потоки из плазмосферы, нейтральные ветры, гравитационные волны. Скорее всего, этот список неполон и нам предстоит подробнее узнать о влиянии на область F2 других факторов, например электрических полей.

5. Загадочная область D

Самая нижняя - самая неясная

Мы поговорим в этой главе о самой нижней части ионосферы - области D, расположенной на высотах 50 - 90 км. Некоторое время назад для этой области использовали также термин "нижняя ионосфера". Но с развитием ракетных и спутниковых исследований выяснилось, что земная ионосфера простирается значительно дальше, чем считалось ранее: достаточно большие концентрации ионосферной плазмы наблюдаются на расстоянии нескольких тысяч километров от поверхности Земли. В связи с этим изменились и "масштабы названий". Под нижней ионосферой теперь чаще всего подразумевают часть ионосферы ниже примерно 200 км, включающую области D, E и F1. Однако и по сей день иногда говорят "нижняя ионосфера", имея в виду только интересующую нас область D.

Ни одна ионосферная область не вызывала за всю историю ионосферных исследований столько споров, как область D. Ни к одной неприменимы в такой полной мере слова "загадки", "проблемы". И это несмотря на то, что область D - нижняя, а значит, и самая близкая к нам часть ионизированной оболочки Земли!

Предметом жгучих дискуссий являлось буквально все. Строение ионосферы на этих высотах, т. е. распределение основного параметра - электронной концентрации. Состав, т. е. распределение с высотой концентраций отдельных ионов. Роль так называемых малых составляющих: окиси азота, паров воды, атомов кислорода и т. д. и последнее, возможно самое главное,- физика процессов, которые создают и поддерживают ионосферу в области D: источники ионизации, законы рекомбинации, пути преобразования одних заряженных частиц в другие. Как это ни парадоксально, но и сегодня описать область D по всем перечисленным пунктам мы можем (если вообще можем) с гораздо меньшей надежностью, чем, скажем, ионосферу на высотах от 400 - 500 километров до нескольких тысяч.

Почему это так трудно

В чем тут дело? Почему изучать физику заряженных частиц на расстоянии 60 км труднее, чем на расстоянии 600 км? Причины этому две. Одна связана с тем, что сама жизнь заряженных частиц в условиях плотной нейтральной атмосферы в области D неизмеримо сложнее, чем на разреженных просторах внешней ионосферы (выше максимума ионизации на 250 - 300 км). Как мы знаем, плотность нейтрального газа в атмосфере резко падает с высотой. Количество нейтральных частиц в единице объема на расстоянии 600 км во много миллионов раз меньше, чем на расстоянии 60 км. Соответственно меньше и частота столкновений заряженных частиц с нейтральными, а значит, меньше хлопот со всякими процессами, которые такие столкновения порождают.

В то же время ионы и электроны в области D вкраплены в весьма плотную (по ионосферным понятиям, разумеется) среду нейтральных частиц и непрерывно с очень большой частотой сталкиваются с последними, порождая обилие химических превращений. Отсюда и разнообразие типов положительных ионов, и появление отрицательных ионов, и весьма сложная связь с такими малыми составляющими, как NO, О, Н2О, концентрации которых сами по себе известны плохо, и т. д. Все это вместе взятое и делает сложным поведение ионосферы на высотах 50 - 90 км и трудным исследование ее физических процессов, которые определяют первую из упомянутых выше причин плохой изученности D-области. О проблемах физики и структуры этой области как раз и пойдет дальше речь.

Популярная аэрономия - _67.jpg
Область D

Вторая причина, тормозящая прогресс в исследовании D-области, касается экспериментальных трудностей и связана, как и первая, с расположением этой области в достаточно плотных слоях атмосферы.

Сколь-нибудь подробный разбор различных методик ионосферных измерений выходит за рамки этой книги, поэтому ограничимся здесь лишь самым общим описанием проблемы.

Прямые измерения ионосферных параметров (концентраций ионов, электронов, электронной и ионной температур) выполняются различными методами. Скажем, на ракете устанавливается специальный прибор - зонд, который измеряет количество заряженных частиц в окружающем ракету атмосферном газе, анализируя изменение электронной проводимости этого газа между двумя электродами, на которые подано высокое напряжение. Этот метод дал много сведений о распределении ионов и электронов в ионосфере выше 100 км. Пытались применять его и для измерений на меньших высотах. Но вот беда, в условиях высокой плотности нейтрального газа он становится ненадежен. Абсолютные значения измеряемых параметров начинают зависеть от многих факторов: плотности газа, образования пленки на электродах, так называемой подвижности ионов в газе и т. д. И точно учесть эти факторы очень и очень трудно. Когда сравнили зондовые измерения в области D с другими, более надежными результатами, оказалось, что величины, например, общей концентрации положительных ионов [Х+] в зондовых измерениях сильно завышены (в 3 - 5, а то в 10 раз). К чему это привело с точки зрения аэрономических проблем, мы поговорим ниже. Сейчас отметим, что в последнее время практически отказались от абсолютных измерений зондовой методикой в области D и используют ее лишь для относительных измерений, т. е. для того, чтобы судить, как выглядит форма высотного профиля концентрации положительных ионов или электронов.

Очень много полезных сведений о строении ионосферы дает так называемый метод некогерентного рассеяния. Метод этот очень дорогостоящий и требует создания огромных радиолокаторов, посылающих в атмосферу мощные импульсы (несколько мегаватт) радиоволн. Тем не менее в мире сейчас существует и успешно работает около десятка таких установок. Но вновь та же беда. В плотных слоях атмосферы из-за частых столкновений электронов и ионов с нейтралами этот метод неприменим. Нижняя граница, с которой еще можно получить сведения об ионосферных параметрах, лежит сейчас на 100 - 150 км. В решении проблем D-области, таким образом, некогерентное рассеяние помочь не может.

По всему земному шару разбросана сеть ионосферных станций. Эти станции регулярно патрулируют состояние ионосферы - следят за отражением радиоволн различных частот от ионосферных слоев. Каждые 15 минут на каждой станции получают и фотографируют картинку-ионограмму, где видно, на каких высотах отражаются радиоволны каких частот. Богатейший материал накоплен таким образом о поведении главного ионосферного максимума в области F2 (250 - 300 км). Часто появляется на ионограммах слой F1 (180 - 200 км), днем хорошо видна ионизация в области Е (100 - 120 км), в виде яркого следа проявляется узкий спорадический слой Es (≈105 - 110 км). А вот область D вновь оказывается не охваченной этим методом исследования. На ионограммах ей нет места: радиоволны, испущенные ионосферной станцией, не отражаются от области D. Правда, нельзя сказать, что оператор на ионосферной станции совсем не видит этой области. Время от времени она проявляется, но в негативном плане. Некоторые частоты исчезают с ионограммы. Они застряли по дороге от станции к отражающим слоям и обратно - частично или полностью поглотились на высотах до 100 км. Эффект D-области налицо. Но говорит ли это нам что-нибудь о структуре самой D-области? К сожалению, очень мало. При вертикальном ионосферном зондировании (так называется описанный выше метод), как и в других случаях, когда измеряется интегральный (суммарный) эффект прохождения радиоволн через D-область, очень трудно перейти от этого интегрального эффекта к реальному распределению концентраций электронов (а именно они определяют поглощение радиоволн) по высоте и к абсолютным значениям этих концентраций. Ведь нам, во-первых, ничего неизвестно, как распределено само поглощение с высотой, а во-вторых, это поглощение зависит не только от концентрации электронов, но и от того, сколь часто они сталкиваются с нейтральными частицами, т. е. от частоты соударений. А этот параметр порождает в D-области уже свои проблемы, обсуждение которых увело бы нас далеко в сторону. Отметим лишь грустный факт, что и вертикальное зондирование не дает желаемых сведений о строении ионосферы на высотах 50 - 90 км.

1 ... 19 20 21 22 23 24 25 26 27 ... 38 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название