Популярная аэрономия
Популярная аэрономия читать книгу онлайн
Впервые в популярной форме, рассказывается об аэрономии - молодой науке, изучающей структуру верхней атмосферы Земли и протекающие там физические и химические процессы. Дается описание современных представлений о структуре атмосферы и ионосферы на высотах 50 - 500 км и проблем, связанных с различными вариациями атмосферных и ионосферных параметров. Подробно излагается современная концепция цикла процессов образования и гибели заряженных частиц, который определяет существование ионосферы.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Впрочем, относительно высокие величины λ возможны в ночное время, в сумерках и во время затмений. Поскольку в этих условиях разрушение отрицательных ионов идет медленнее, чем днем, возможно накопление Х- до более высоких, чем днем, концентраций. Так, в сумерках на высоте 80 км величина λ может быть близка к 1, а ночью и во время полной фазы солнечного затмения может составлять даже несколько единиц.
Мы видим теперь, как обстоит дело с общим количеством отрицательных ионов, т. е. с абсолютными концентрациями Х- в области D. Но кроме общего количества хорошо бы еще знать и химический состав отрицательных ионов.
Увы, дело с измерением состава отрицательных ионов обстоит плохо. Ко всем трудностям исследования ионного состава в случае положительных ионов добавляется еще то, что теперь речь идет об отрицательных ионах, а измерять концентрации тяжелых отрицательных частиц труднее, чем положительных.
Тем не менее первые масс-спектрометрические эксперименты по измерению состава отрицательных ионов были проведены, и даже не одной, а сразу двумя группами ученых - в ФРГ (Арнольд и Кранковский) и в Соединенных Штатах (Нарциси). Что же они обнаружили?
Обнаружили очень сложную картину. Гораздо более сложную, чем ожидали. Было очевидно, что в D-области должны быть ионы О2- поскольку они образуются в первичной реакции (32). Ожидали в небольшом количестве ионы О-. Можно было ожидать и появления таких ионов, как NO2-, NO3-, CO3-.Ho кто мог предсказать существование в ионосфере ионов НСО3-, 02-(Н2О)2, N02-(HN02) и т. д.! В таблице приведен список всех ионов (с указанием массового числа и вероятного химического отождествления), зарегистрированных в одном из экспериментов группы ФРГ. Как видим, коллекция более чем экзотических ионов весьма внушительная.
Состав отрицательных ионов, обнаруженных в ионосфереДело, однако, не только в необычности и сложности обнаруженных отрицательных ионов. Плохо то, что нет повторяемости, воспроизводимости результатов. Измерения Нарциси дают в основном другие массовые числа (а значит, и другое отождествление) сложных ионов, чем измерения Арнольда и Кранковского. Результаты обеих групп расходятся и в том, какие ионы доминируют на каких высотах. Есть различие и в высотном ходе. У Арнольда и Кранковского выше 75 - 77 км наблюдается падение концентраций отрицательных ионов, а Нарциси видит слои отрицательных ионов на высотах 88 - 92 км. Наконец, нет единства даже в вопросе о том, все ли зарегистрированные отрицательные ионы относятся к атмосфере. Например, ионы с массовыми числами 35 и 37 немецкая группа отождествляет с изотопами хлора и считает ионами атмосферного происхождения (при этом возникает очень интересная проблема - откуда этот хлор взялся на 60 - 70 км), тогда как Нарциси относит эти ионы к загрязнению ракетой.
Словом, картина пока довольно безрадостная. Нет согласия между экспериментаторами, значит, нет надежных экспериментальных данных, и мы не имеем ни достоверной картины состава отрицательных ионов, ни даже опорных точек, чтобы проверить теоретические модели Х-.
Разобравшись в том, как обстоит дело с экспериментальными данными, уместно теперь задать вопрос, а что гласит теория образования отрицательных ионов -можем ли мы что-либо добавить на основании фотохимии отрицательных ионов?
Признаемся сразу, что проблема фотохимии отрицательных ионов пока далека от своего решения. Многие реакции еще не исследованы в лаборатории. А многие даже неизвестны. Ведь в существующие сегодня схемы не включаются некоторые ионы (в основном тяжелые ионы-связки), приведенные в таблице. Но эти ионы существуют, а значит, существуют и соответствующие реакции их образования и гибели. Просто мы о них пока ничего не знаем. Тем не менее интенсивно ведутся попытки построить теоретические схемы преобразования отрицательных ионов и понять, какие из наблюдаемых экспериментальных фактов эти схемы могут объяснить.
Мы рассмотрим теперь возможности фотохимической теории отрицательных ионов. Как и в случае положительных ионов, мы опишем упрощенную схему, позволяющую наиболее острые вопросы обсудить, избегая громоздких схем со множеством реакций, требующих детальных пояснений.
В нашей схеме будут фигурировать наряду с электронами два типа отрицательных ионов: "ионы кольца" и "стабильные ионы". Эти названия были введены несколько лет назад автором по следующим причинам. Ионы первой группы очень быстро переходят друг в друга по ионно-молекулярным реакциям (например, О2- - в О3-; и в О4; О3- - в СО3-; СО- - снова в О2- и т. д.). При этом все время идут быстрые реакции прилипания и отлипания, поэтому электроны как бы движутся по кругу: от свободного состояния к иону О2-, затем О3-, затем к СОГ, затем снова к О2- и вновь к свободному состоянию. При этом указанные реакции столь эффективны, что именно они определяют время жизни (а следовательно, и концентрации) ионов кольца, а, скажем, процессы взаимной нейтрализации на их концентрации не влияют. Как показывают оценки, концентрации таких ионов, по крайней мере в дневной области D, малы - не они выступают в роли основных отрицательных ионов, однако их роль как промежуточного этапа всего ионизационно-рекомбинационного цикла процессов очень велика.
Стабильные ионы названы так потому, что для них, видимо, нет столь быстрых процессов перехода друг в друга или отделения электрона (отлипания). Основным процессом гибели для них является взаимная нейтрализация с положительными ионами. Стабильные ионы должны составлять подавляющее большинство отрицательных ионов в D-области. Наиболее вероятные кандидаты в стабильные ионы - NO2-, NO3- и отрицательные ионы-связки, о которых пока известно мало.
В нашу схему включены четыре принципиальных процесса. О прилипании мы уже говорили. Оно идет в основном по реакции (32). На всякое прилипание должно существовать отлипание. Есть оно и в нашей схеме. Его обеспечивают два очень важных процесса отлипания от ионов О2- в реакциях с атомным кислородом и возбужденными молекулами кислорода.
Здесь уместно сделать маленькое отступление. Что значит "отлипание"? Это значит отрыв электрона от нейтральной частицы. Но электрон в отрицательном ионе не просто приложен к нейтральной частице, он с ней связан некоторой энергией. Эта энергия связи называется электронным сродством S данной нейтральной частицы и выражается обычно в электронвольтах. Следовательно, чтобы произошло отлипание, нужно затратить энергию, равную S. Но где ее взять? Если отлипание происходит под действием излучения (фотоотлипание), необходимую энергию обеспечивает квант излучения. В случае включенной в схему реакции
Формула 34для отрыва электрона используется энергия возбужденной молекулы О2* (в правой части реакции возбужденных частиц нет - энергия ушла на разрушение О2-).
Ну а в реакции С2- с О? У атома О ведь нет дополнительной энергии. Оказывается, в этой реакции
Формула 35отрыв электрона происходит за счет энергии диссоциации молекулы О3.
Действительно, ведь, чтобы разрушить молекулу озона на О2 и О, надо затратить энергию. А при создании (ассоциации) О3 эта энергия должна выделиться. Вот она-то и расходуется на отлипание электрона, а вся реакция носит поэтому название ассоциативного отлипания.
Итак, "вернемся к нашим баранам". Следующий тип процессов в рассматриваемой схеме - ионно-молекулярные реакции. Они аналогичны ионно-молекулярным реакциям положительных ионов, хорошо нам теперь известным, и играют в схеме ионных преобразований примерно такую же роль, т. е. в конечном итоге переводят первичные ионы ОГ во вторичные, более стабильные ионы (NО2-, NО3- и т. д.), которые участвуют в процессах рекомбинации и образования ионов-связок. И наконец, последний тип процессов - взаимная рекомбинация положительных и отрицательных ионов. Наибольшие трудности связаны с поиском ионно-молекулярных реакций, эффективно переводящих ионы кольца в стабильные ионы. В качестве решения проблемы предложены две похожие реакции: