Знание - сила, 2003 № 09 (915)
Знание - сила, 2003 № 09 (915) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Находка и обрадовала, и опечалила ученых. Стало ясно, что еще в ту далекую эпоху на месте Парижа жили люди. До сих пор считалось, что первое поселение здесь возникло около двух тысяч лет назад. Но как сохранить эти ветхие куски дерева? «В сырой земле дерево может пролежать тысячи лет, — пояснил Анри Бернар-Можирон. — а вот, попав на воздух, быстро гниет».
Сберечь находку помогла Радиационная лаборатория из Гренобля, где работает Бернар- Можирон. Сперва обломки погрузили в ванну, наполненную особой искусственной смолой. Через несколько месяцев все деревянные поры пропитались смолой. Затем ветхое суденышко перенесли в радиационную камеру, где в течение дня обстреливали его гамма-лучами. Эти лучи вызвали цепную химическую реакцию: жидкая смола застыла и намертво скрепила деревянные части. Теперь они не могли рассыпаться, как труха. Кроме того, радиация погубила грибы и бактерии, подтачивавшие изнутри древесину. После этой процедуры из отдельных обломков составили лодку и выставили ее в музее.
Новый метод реставрации пришелся ученым по вкусу. Его уже применили при консервации мумии египетского фараона Рамсеса И, древнекитайских надгробных статуй, а также деревянных предметов, найденных на борту затонувшего «Титаника».
Рафаил Нудельман
Гонки «Формула-1» В живой клетке
Альберт Сент-Дьёрди, один из «великих венгров», прославивших в XX веке свое отечество, физиолог и биохимик, получивший Нобелевскую премию за открытие витамина С, рассказывал, что самым волнующим моментом во всей его долгой научной карьере было не вручение премии и даже не само открытие, за которое он ее получил, а скромный эксперимент, проделанный им в 1934 году, когда, работая с длинными белковыми волокнами, выделенными из мышцы кролика, он погрузил их в раствор химикалиев и увидел, как эти волокна на его глазах начинают сокращаться, становясь все более толстыми и короткими. «Я впервые наблюдал, как движение, этот древнейший признак жизни, само собой возникает в пробирке, и это взволновало меня более всего в жизни».
Все живое обладает способностью к самодвижению — это его отличительная особенность. Положите выделенную из организма клетку почки или простаты на стеклянную пластинку. и эта клетка начнет ползти по ней, то распластываясь, то подтягивая свою заднюю часть, как это делает всем знакомая гусеница. Проследите за нервной клеткой, извлеченной из эмбриона животного, и вы увидите, как она выпускает длинный отросток, филоподию, и нащупывает им, где находится другая такая же клетка, чтобы установить с ней контакт.
Движутся не только сами живые клетки — движение происходит и во внутриклеточном пространстве. Гормоны и питательные вещества переносятся с поверхности клетки в ее протоплазму. Химические вещества, инструкции генов на изготовление белков-ферментов и сами эти белки движутся к местам своего назначения от клеточного ядра к периферии. А самой, быть может, впечатляющей иллюстрацией этого внутриклеточного движения является то открытие, которое по счастливой случайности совершил в 1981 году Роберт Аллен. Желая показать своим студентам, что происходит в длинном отростке нервной клетки — аксоне, он присоединил видеокамеру к микроскопу, и сам с огромным удивлением увидел, как по волокнам, тянущимся внутри тонкой (в I мм) и длинной (около I метра) трубки аксона, равномерно, один за другим ползут в обе стороны, точно вагончики какого-нибудь песчаного карьера, маленькие круглые прозрачные пузырьки примерно в стотысячную долю сантиметра в диаметре. То было не просто перемешение, а строго организованное и направленное перемещение, и, глядя на эти упорно ползущие по своему назначению ультрамикроскопические дрезины, не трудно было понять, почему ученые еще в XIX веке считали, что в клетках существует какая-то таинственная «жизненная сила», которая и является первопричиной всех клеточных и внутриклеточных движений.
Но на дворе стоял уже, как было сказано, 1981 год, и поэтому открытие Роберта Аллена положило начало не поискам этой «жизненной силы» — в нее уже никто к тому времени не верил, а планомерному изучению тех физико-химических факторов, тех «клеточных моторов», которые делают возможными все эти «движения живого».
Молекулы, осуществляющие функцию движения в нашем теле, в том числе и в самых крохотных его Структурах, имеют причудливый вид, но для всех них характерно одно: на концах молекул — наличие подвижных головок- блоков, которые, собственно, и служат движущим элементом. (Слева — молекула кинезина, в середине — динеина, справа — миозина.)
Поиск этот оказался сложным и продолжается по сию пору — со все возрастающим успехом. Один такой выдающийся успех был достигнут буквально на днях, когда группе исследователей под руководством С. Берджесса удалось разгадать принципы работы очередного такого «клеточного мотора» — молекулы динеина. Было бы жалко не приобщить читателя к той изумительной по тонкости и сложности картине «внутримолекулярной жизни», которую вскрыла в молекуле динеина группа Берджесса, но увы — даже просто рассказать об этой работе, а тем более — растолковать ее суть и значение, оказалось никак невозможно, предварительно не рассказав, хотя бы бегло, о молекулярных моторах вообще. Вот так это открытие и послужило первоначальным толчком к целому рассказу. Как говорится, был бы повод, а рассказ найдется. А рассказ, думается, полезен, ибо молекулярные эти моторы и в самом деле представляют огромный интерес. Ведь именно им жизнь обязана всей той особой, специфически присущей ей динамикой, без которой она, жизнь, была бы попросту невозможна.
Первым шагом к ответу на этот вопрос стало открытие того факта, что все клетки в организмах более сложных, чем бактерии, обладают двумя важнейшими свойствами, которые, собственно, и позволяют им существовать: исчезновение хотя бы одного из этих свойств приводит к гибели клетки. Это открытие было сделано в самые последние десятилетия и буквально перевернуло все прежние представления.
Одним из этих жизненно важных свойств является сложная организованность внутриклеточного пространства. Живая клетка — не просто «мешочек с протоплазмой», как говорил еще в XIX веке страстный пропагандист дарвинизма Томас Хаксли. Исследования последних десятилетий показали, что внутренность клетки ячеиста — она состоит из отдельных ячеек, «помещений», отделенных от других собственной мембраной. Каждая такая ячейка, или органелла (маленький орган) клетки имеет свою внутреннюю структуру и свой набор химических вешеств, каждая выполняет свою функцию. И каждая покрыта системой белков-рецепторов, задача которых — распознать, что из всего, что куда-то движется в клетке, предназначено именно для данной ячейки.
Движутся же в клетке те химические вещества, что необходимы для ее жизнедеятельности, и молекулы этих веществ не просто хаотически плавают в протоплазме, а направленно и организованно перемещаются в различных направлениячх, упакованные в крохотные контейнеры — те самые прозрачные пузырьки, которые впервые увидел Аллен. При этом каждый такой контейнер снабжен своим «опознавательным знаком», своим рецептором, белковой молекулой такой формы, которая распознается рецептором той — и только той — ячейки, для которой этот контейнер предназначен. Когда оба рецептора сочленяются, пузырек приваривается к органелле, и его содержимое переходит в нее, чтобы она могла выполнять свои функции.
Начатки такой организованности обнаружены уже у одноклеточных водорослей и бактерий, и раз эта внутренняя организация клеток давала бесспорные преимущества ее обладателям, а мутации непрерывно порождали все новые и новые (лучшие и худшие) варианты такой организованности, природе (естественному отбору) оставалось только отбирать то, что оказывалось организованным все лучше и все сложнее.