-->

Путешествие по Карликании и Аль-Джебре

На нашем литературном портале можно бесплатно читать книгу Путешествие по Карликании и Аль-Джебре, Левшин Владимир Артурович-- . Жанр: Детская образовательная литература / Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Путешествие по Карликании и Аль-Джебре
Название: Путешествие по Карликании и Аль-Джебре
Дата добавления: 15 январь 2020
Количество просмотров: 237
Читать онлайн

Путешествие по Карликании и Аль-Джебре читать книгу онлайн

Путешествие по Карликании и Аль-Джебре - читать бесплатно онлайн , автор Левшин Владимир Артурович

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.

Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.

Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 31 32 33 34 35 36 37 38 39 ... 50 ВПЕРЕД
Перейти на страницу:

— Что за вопрос! — перебил Сева. — Конечно, захотим!

— Тогда подойдите к этим аппаратам. — Пэ подвёл нас к стойке, где стояли до блеска начищенные кофеварки.

— Все эти сосуды, — продолжал он, — самой различной формы, но, заметьте, одинаковой высоты. И рассчитаны они на разное количество жидкости. В этом — четверть литра, в этом — литр, а в этом — два литра крепкого чёрного кофе. Зато донышки сосудов, так же как и высота, совершенно одинаковых размеров. Они прижаты к сосудам особым механизмом с пружинками. Как только вес жидкости в сосуде становится больше силы, с которой пружинки прижимают донышко к сосуду, донышко опускается и отводится в сторону рычажком.

Мы подумали, что пружинки в разных сосудах прижимают донышко с разной силой.

— Ничего подобного, — возразил директор, — пружинки всюду совершенно одинаковые.

— Как же так? — удивились мы. — Ведь сосуды вмещают разное количество жидкости. Чем больше налито кофе, тем больше будет его давление на дно?

— В том-то и суть закона Паскаля, что давление на дно не зависит от количества жидкости в сосуде! — воскликнул Пэ. — Оно зависит лишь от высоты сосуда.

— Проверим! — сказал Сева и решительно направился к самому большому сосуду. Он уже собирался нажать кнопку, чтобы налить себе кофе, но директор его остановил:

— Как? Вы хотите выпить сразу два литра? Но ведь это же очень вредно! Из этого сосуда мы отпускаем кофе на дом многосемейным. Прошу вас за столик. Сейчас я подам вам по чашечке кофе и большую вазу с треугольниками. Они тоже приготовлены по рецепту Паскаля.

Вот не, думал, что можно питаться треугольниками! При слове «треугольник» мне сейчас же вспоминаются папины чертёжные принадлежности.

Путешествие по Карликании и Аль-Джебре - i_145.png

Слава богу, треугольники в кафе «Абракадабра» вовсе не пластмассовые, а вафельные. И с самой разной начинкой: шоколадные, фруктовые, сливочные, ореховые, миндальные. Мы перепробовали все, какие были, и так увлеклись, что не заметили, как кафе заполнилось публикой. Скоро все столики были заняты. К этому времени у нас оставалось всего-навсего три вафли. Все взяли по одной и хотели уже прикончить, но нас остановила Таня.

— Смотрите, — сказала она, — на моём треугольнике какая-то надпись.

Тогда и мы посмотрели и увидели, что на вафлях написано: «Треугольник Паскаля».

— Что-то вроде штампа фабрики, — сообразил Сева. — Как у нас «Красный Октябрь» или «Фабрика имени Бабаева».

— А это тоже «фабрика Бабаева»?

Таня перевернула треугольник другой стороной. Там были выпуклые числа. Мы сличили свои вафли — числа на всех были одинаковые.

Сначала нам показалось, что они расположены беспорядочно. Только слева и справа в каждом ряду обязательно стоит единица. Приглядевшись, мы увидели, что числа определённым образом чередуются. Вот, например, в пятом ряду: 1, 4, 6, 4, 1. В седьмом: 1, 6, 15, 20, 15, 6, 1. Мы заметили также, что, если спускаться по левой стороне треугольника, в первом наклонном столбце написаны единицы, во втором — натуральный ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9… Дальше числа стоят вразброд: 1, 3, 6, 10, 15, 21… А потом и того хуже: 1, 4, 10, 20, 35, 56…

— Одним словом, абракадабра! — проворчал Сева.

— Напрасно думаете, — заметила наша соседка, латинская буква Эс. — В этих числах есть определённый порядок, и разобраться в нём вовсе не трудно.

— Ну, где тут порядок? Где? — горячился Сева.

— Немножко наблюдательности — и вы перестанете спорить. Заметьте, что любое число в этом треугольнике равно сумме двух чисел, стоящих над ним.

— Правда! — сказала Таня. — Число 28 из девятого ряда равно сумме семи и двадцати одного, которые стоят над ним.

— А 126 из десятого ряда равно сумме семидесяти и пятидесяти шести, — сосчитал Сева.

— Вот видите! Никогда не торопитесь с выводами, — сказала Эс. — Часто то, что кажется неразберихой, на самом деле имеет строгий порядок. Надо только его обнаружить. В том-то и задача каждого учёного.

— До чего интересный треугольник придумал Паскаль! — вздохнула Таня.

— О, в этом треугольнике ещё много замечательного. Сложите числа каждого ряда. В первом ряду так и будет единица. Во втором?

— Два.

— В третьем?

— Четыре. В четвёртом — восемь, в пятом — шестнадцать, затем — тридцать два, шестьдесят четыре…

— Слушайте! — закричал я. — Ведь это же разные степени числа два:

20= 1;

21= 2;

22= 4;

23= 8;

24= 16;

25= 32.

Мне показалось, что Эс посмотрела на меня одобрительно.

— Не кажется ли вам, — сказала она, — что все эти степени можно записать одним алгебраическим выражением: 2n-1 — два в степени эн минус единица?

— Отчего же не просто два в степени эн?

— Оттого что эн обозначает порядковый номер строки, а показатель степени здесь всегда на единицу меньше порядкового номера. В первой строке — нуль, во второй — единица, в третьей — два и так далее.

— Ага! — догадалась Таня. — Выходит, сумма чисел, стоящих в десятой строке, будет равна двум в девятой степени, что можно изобразить так: два в степени десять минус единица: 210-1.

— Или два в степени эн минус единица, — победоносно закончил Сева.

— Очень приятно, что вы это поняли, — обрадовалась Эс.

Но Сева сейчас же доказал, что радоваться рано.

— Жаль, что такое удивительное изобретение используется только для приготовления вафель, — заявил он.

Эс даже поперхнулась.

— Что вы такое говорите! Треугольник Паскаля широко применяется в Аль-Джебре. Он блестяще используется при возведении в степень двучленов. Кстати, этим вопросом занимался не только Паскаль, но и его великий современник, сэр Исаак Ньютон. С его формулой, известной под названием бином Ньютона, вы познакомитесь несколько позже. Каждому овощу своё время…

— А! Ньютон! — небрежно отмахнулся Сева. — Это тот самый, который подошёл к нам вместе с Лейбницем на Дороге Светлого Разума. Они там вдвоём что-то такое открыли, а потом разбирались, кто из них первый…

— Это «что-то такое» было началом высшей математики. И называется оно анализом бесконечно малых и бесконечно больших величин.

Путешествие по Карликании и Аль-Джебре - i_146.png

И Эс, сухо попрощавшись, удалилась.

Сева так смутился, что нам его жалко стало.

Но не прошло и пяти минут, как он уже составлял какие-то новые треугольники, которые решил, конечно, назвать своим именем.

Вот один из них. Покажи его своим ученикам. Может быть, вы наведёте в нём порядок.

Будь здоров.

Олег.

Да! Совсем забыл ответить на твой вопрос. Ты хочешь знать, почему а+Ь−с называется суммой.

Дело в том, что знаки плюс и минус, обозначающие положительные и отрицательные числа, в то же время обозначают сложение и вычитание.

Что значит, например,

Путешествие по Карликании и Аль-Джебре - i_147.png

Разве это не то же самое, что 3–2?

И то и другое равно единице.

Потому-то в алгебре сумму и разность часто объединяют одним названием: алгебраическая сумма.

Напиши а+b−с так:

Путешествие по Карликании и Аль-Джебре - i_148.png

и ты увидишь, что Сева нисколько не ошибся.

Горячо — холодно

(Сева — Нулику)

Ну, Нулик, держись! Это письмо тебя наверняка удивит и обрадует, потому что… Впрочем, нет! Рассказывать, так по порядку.

Всё ещё торчим в «Абракадабре». То никак не могли попасть, то никак не выберемся. Совсем уж собрались уходить, но вдруг я вспомнил о стручке, сунул руку в карман — пусто!

Искали, искали, лазали по полу — хорошо, пол здесь чистый, — нигде его нет… А потом я подошёл к столу, где мы сидели, и вижу: в вазе на круглой бумажной салфетке лежит один треугольник. Откуда он взялся? Помнится, мы съели все.

1 ... 31 32 33 34 35 36 37 38 39 ... 50 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название