-->

Путешествие по Карликании и Аль-Джебре

На нашем литературном портале можно бесплатно читать книгу Путешествие по Карликании и Аль-Джебре, Левшин Владимир Артурович-- . Жанр: Детская образовательная литература / Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Путешествие по Карликании и Аль-Джебре
Название: Путешествие по Карликании и Аль-Джебре
Дата добавления: 15 январь 2020
Количество просмотров: 237
Читать онлайн

Путешествие по Карликании и Аль-Джебре читать книгу онлайн

Путешествие по Карликании и Аль-Джебре - читать бесплатно онлайн , автор Левшин Владимир Артурович

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.

Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.

Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 29 30 31 32 33 34 35 36 37 ... 50 ВПЕРЕД
Перейти на страницу:

a2

Путешествие по Карликании и Аль-Джебре - i_127.png

Вы думаете, число Два и в этом случае называется коэффициентом? Ничего подобного! Это показатель степени. Вы уже с ним знакомы. Ведь упражнение, которое сейчас проделывают буквы, — это возведение в степень!

Вот перемножились три b, и получилось Бэ в кубе:

b3

Десять с, перемножившись, образовали одночлен — Цэ в десятой степени:

с10.

Одна комбинация сменяется другой. Перед нами возникают

a25, b40, с16, a6.

И вот появлятся Цэ в степени эн:

сn.

Это уже что-то новое. Правда, только на первый взгляд. Мы ведь уже знаем, что буквами обозначаются числа. Цэ в энной степени означает Цэ, возведённое в любую степень. Подставьте вместо эн любое число — и ответ готов.

Музыканты после небольшой паузы снова заиграли вальс. Начались самые пластичные, самые замысловатые гимнастические упражнения: умножение многочленов на одночлен.

Вот уже образовались двучлены:

а+6, а+c,

потом трёхчлены:

a+b+c

и много других. Сейчас они начнут умножаться на одночлены… Но в чём дело? Произошла какая-то заминка. Музыка смолкла. Ага! Теперь всё ясно: оказывается, многочлены не могут ни на что умножаться, если их предварительно не заключить в скобки. Иначе может выйти ужасная путаница: никто не узнает, где тут одночлен, а где многочлен.

На поле появляются круглые скобки. Они становятся по бокам каждого многочлена. Ну вот, всё в порядке, можно продолжать.

Начинается представление под названием «Хитрый обманщик».

На поле появляется выражение:

(а+)с.

Цэ стучится в скобку, как в дверь.

Цэ. Хозяева дома?

А+Бэ (вместе). Да! А кто это?

Цэ. Это я, Цэ.

А+Бэ. А с вами никого нет?

Цэ (невинным голосом). Никого.

А+Бэ. Тогда входите.

Скобки открываются, Цэ входит и… раздваивается. Одно Цэ подходит к А, другое — к Бэ. И вот мы уже видим новую сумму:

ac+bc.

Все негодуют. Свист, крики:

— Гоните обманщика!

А+Бэ (вместе). На помощь! Спасите!!

Путешествие по Карликании и Аль-Джебре - i_128.png

Вбегают дружинники и выносят отчаянно сопротивляющихся Цэ за скобки. Здесь обе буквы снова превращаются в одно Цэ.

Обманщик наказан. Справедливость торжествует. На поле снова красуется прежнее выражение:

(а+b)с.

Пьеса имеет шумный успех. Артистов вызывают много раз, точнее, эн раз — п раз.

Сказав так, я никого не обману, и дружинникам не придётся выносить меня за скобки.

Дорогие радиослушатели! Как видно, эти упражнения никогда не кончатся, а я уже устал. Очень прошу вас, возьмите карандаши и бумагу и придумайте сами пример на перемножение многочленов.

До свидания.

Репортаж с Центрального стадиона Аль-Джебры вёл

Сева.

Пекари-жонглёры

(Снова Сева — Нулику)

Ну как, Нулик, здорово у меня вышло? Конечно, у того комментатора, который вёл передачу со стадиона, получалось лучше. А по мне сойдёт и так.

А сейчас я тебе своими словами расскажу, что было дальше.

По радио объявили: «Следующий номер нашей программы — „Весёлые пекари“! Высший класс жонглирования! Перемножение и деление степеней!»

На зелёное поле выбежали три буквы Цэ. Все они были в белых поварских колпаках, у каждой палка, а на палке кольца — похоже на детские пирамидки. Только там кольца разноцветные, одно другого меньше, а здесь одинаковые, золотистые, как толстенькие поджаристые бублики.

Это и впрямь были бублики, да ещё с маком! У одного пекаря — два бублика, у другого — три. У третьего колец на палке не было.

Заиграла музыка.

Первый пекарь снял с палки верхнее кольцо и ловко метнул. Кольцо очертило в воздухе плавную дугу и угодило на пустую палку третьего пекаря. Вслед за первым кольцом туда же полетело второе. То же самое сделал другой пекарь, и вот уже у третьего пекаря на палке все пять колец, а первые два пекаря остались ни с чем.

Потом жонглёры перестроились. Теперь у одного на палке было три кольца, у другого — шесть, у третьего опять ничего. Снова заиграла музыка, замелькали кольца.

И опять у третьего пекаря на палке — девять бубликов, а у других — ничего.

— Чистая работа, — сказал Дэ, — ни одно колечко не упало.

— Работа-то чистая, но при чём здесь умножение степеней? — спросил я. — Не понимаю.

— А я понимаю, — похвасталась Таня. — При перемножении степеней показатели надо складывать:

с3·с6 = с3+6 = с9.

— Совершенно правильно, — подтвердил Дэ. — Число колец на палке обозначает показатель степени.

— Пусть, — сказал я, — а мне всё равно непонятно.

— Поглядите на поле, — предложил Дэ, — тогда уж обязательно поймёте.

Путешествие по Карликании и Аль-Джебре - i_129.png

Я поглядел и увидел, что два Цэ (у одного на палке три кольца, у другого — шесть) стали рядом и между ними появился знак умножения — точка. И тут на поле выбежали ещё девять Цэ. У них на палках было только по одному кольцу. Трое из них встали на место Цэ с тремя кольцами, а шестеро заменили Цэ с шестью кольцами. Тогда пекарь с пустой палкой отделился от них знаком равенства и стал следом за ними.

А первые два пекаря отдали ему свои кольца, и получилось вот что: На этот раз и вправду всё было понятно: Цэ в третьей степени, умноженное на Цэ в шестой, — это всё равно что Цэ, умноженное само на себя девять раз, или попросту Цэ в девятой степени.

Потом началось деление степеней. На поле выкатили двухэтажную тележку. На верхнюю площадку вскочил жонглёр с тремя кольцами на палке — числитель, на нижнюю — жонглёр с двумя кольцами — знаменатель. И вдруг Цэ стали лопать свои бублики: числитель съест один, и знаменатель — один, числитель — один, и знаменатель — один… Когда Цэ-знаменатель съел все свои бублики, он исчез. На площадке осталась только его палка.

А Цэ-числитель — у него на палке ещё болтался один бублик — продолжал стоять наверху как ни в чём не бывало.

— Ясно, — сказал Олег. — Деление — действие, обратное умножению. Значит, показатели степеней надо при этом не складывать, а вычитать.

— Верно! — поддержала Таня. — Из трёх бубликов отняли два. В знаменателе очутилась палка-единица. А в числителе — Цэ с одним бубликом, то есть Цэ в первой степени.

— Первая степень не пишется, — вспомнил я. — Стало быть, просто Цэ:

Путешествие по Карликании и Аль-Джебре - i_130.png
Путешествие по Карликании и Аль-Джебре - i_131.png
Путешествие по Карликании и Аль-Джебре - i_132.png

— Вот вам и частное от деления двух степеней, — пояснил Дэ. — Посмотрим теперь, что будет, если Цэ в квадрате разделить на Цэ в кубе.

Теперь на верхней площадке стоял Цэ-числитель с двумя бубликами, а на нижней Цэ-знаменатель с тремя. Опять они принялись уплетать, но теперь уже без бубликов оказался Цэ-числитель. Он исчез, оставив на площадке свою палку. А Цэ-знаменатель, у которого оставался один бублик, продолжал стоять на площадке.

— Видите, — сказал Дэ, — частное от деления равно единице, делённой на Цэ, или одной цэтой, как у нас говорят.

— Позвольте, — вмешался Олег, — при делении степеней показатели вычитаются. Значит, это можно изобразить так:

Путешествие по Карликании и Аль-Джебре - i_133.png

— Ой! — испугалась Таня. — Получилась отрицательная степень!

— Вполне законно, — возразил Дэ. — Одна цэтая — это то же самое, что Цэ в минус первой степени.

Вон оно что! Выходит, если целое число возвести в отрицательную степень, оно превращается в дробь:

Путешествие по Карликании и Аль-Джебре - i_134.png
1 ... 29 30 31 32 33 34 35 36 37 ... 50 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название