-->

Стол находок утерянных чисел

На нашем литературном портале можно бесплатно читать книгу Стол находок утерянных чисел, Левшин Владимир Артурович-- . Жанр: Детская образовательная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Стол находок утерянных чисел
Название: Стол находок утерянных чисел
Дата добавления: 15 январь 2020
Количество просмотров: 288
Читать онлайн

Стол находок утерянных чисел читать книгу онлайн

Стол находок утерянных чисел - читать бесплатно онлайн , автор Левшин Владимир Артурович

Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.

Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку. Это еще одна из книг этих авторов.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 10 11 12 13 14 15 16 17 18 ... 22 ВПЕРЕД
Перейти на страницу:

— Никогда не пойте во время еды! — сказала знаменитая крыловская Ворона. — Это не принято в хорошем обществе.

— Приглашая гостей, позаботьтесь об угощении! — сказала Лиса, доедая с плошки манную кашу, которой угощала Журавля.

— И не забудьте о сервировке, — грустно добавил голодный Журавль.

— Собираясь путешествовать вместе, не берите билетов на разные виды транспорта, — посоветовали Лебедь, Рак и Щука.

— Охотясь на очковую змею, не забудьте сбить с неё очки, — напомнил Рикки-Тикки-Тави.

— И всегда носите их в футляре, — добавила Мартышка, — ведь больше они ни на что не годятся!

— Не заглядывайте в пасть крокодилу, — остерёг нас любопытный Слонёнок. — Как бы он не оставил вас с носом! И предлинным.

— Никогда не опаздывайте! — сказала Кошка, которая ходит сама по себе. — Вы рискуете прийти к шапочному разбору.

Стол находок утерянных чисел - _017.jpg

Это был своевременный совет, и мы поспешили в цирк.

В ЦИРКЕ

Что может быть лучше летнего цирка? Только зимний! Цирк любят все. Старики вспоминают здесь свою молодость. Молодые превращаются в детей. А дети, которых досрочно пытаются превратить во взрослых, забывают обо всём на свете и развлекаются, как им и положено.

На сей раз они получили возможность соединить приятное с полезным, посмотрев программу развлекательно-познавательную, к тому же с числовым уклоном. Не сомневаюсь: тут кое-кто из юных читателей недовольно поморщится. Возможно, это будет москвич. Возможно, ленинградец. Но уж наверняка не уроженец Энэмска!

Энэмские дети любят числа с рождения. И потому они страшно обрадовались, когда на манеж выбежали два клоуна в костюмах, сплошь размалёванных цифрами.

— Здравствуй, Пи! — на весь цирк закричал один.

— Здравствуй, Э! — закричал другой. — Что у тебя висит на руке?

— Не скажу! — заупрямился Пи и тут же проговорился: — Сумка.

— А что ты в ней прячешь?

— Не скажу, — опять заупрямился Пи и опять проговорился: — Корни.

— Какие корни? Еловые?

— Не угадал! — визгливо захохотал Пи.

— Дубовые?

— Опять не угадал! — снова захохотал Пи. — Квадратные и кубические.

— А что ты собираешься с ними делать?

— Извлекать!

— Откуда?

— Из сумки!

Тут он действительно извлёк из сумки чёрную табличку и очень крупно написал на ней мелом:

Стол находок утерянных чисел - eq005.jpg

— Слушай, Э! — снова закричал он. — Сейчас я буду тебя экзаменовать. Вот тебе корень квадратный из ста шестидесяти девяти. Как ты будешь его извлекать?

— Надо подумать! — сказал Э и поскрёб в затылке.

— А вот и не надо! — возразил Пи. — Корни лучше всего извлекать носовым платком.

В руке у него появился большой красный платок с крупными белыми горохами, и он стёр им среднюю цифру в числе 169.

— Главное сделано, — заявил он. — Остаются пустяки. Извлекаем корень квадратный из единицы. Что получим?

— Единицу! — закричали со всех сторон.

— Правильно! — подтвердил Пи. — А теперь извлечём корень квадратный из девятки. Получим…

— Три! — опять закричали зрители.

— Цифры 1 и 3 образуют число 13. Вот вам и корень квадратный из ста шестидесяти девяти!

Публика дружно захлопала, а бедный Э, наоборот, ужасно расстроился.

— Не штука извлечь корень квадратный, — сказал он, — а ты вот попробуй кубический!

— Пожалуйста! — согласился Пи и написал на дощечке:

Стол находок утерянных чисел - eq006.jpg

Потом он опять стёр платком, но уже две средние цифры, извлёк корень кубический из оставшейся единицы, затем из восьми и получил 12, что и есть корень кубический из тысячи семисот двадцати восьми.

Э после того заревел в голос и стал утирать нос платком Пи. А зрители снова захлопали, и громче всех — Главный терятель. Числовые фокусы — его страсть.

Девочке клоуны тоже понравились, и она спросила, откуда у них такие смешные имена. Я объяснил, что так в математике обозначают особые числа, которые, между прочим, тоже иррациональны. Одно из них для краткости записывают греческой буквой «пи» (π). Это число очень важное. Оно помогает нам вычислять длину окружности и приближённо равно трём целым и четырнадцати сотым (≈3,14). Число «э» обозначают маленьким латинским «е», и оно приближённо равно двум целым семидесяти двум сотым (≈2,72). Но девочке оно понадобится много позже, когда она познакомится с высшей математикой. А пока будет с неё и того, что обозначения «пи» и «э» ввёл великий швейцарский математик Леонард Эйлер, который долгие годы жил в России и был единомышленником великого Ломоносова.

Вслед за клоунами выступал жонглёр-мнемотехник. Он делал несколько дел сразу: танцевал на спине у бегущей лошади, жонглировал светящимися дисками и между прочим отгадывал степени натуральных чисел, задуманные зрителями.

Вы, конечно, помните, что в возведении в степень участвуют три числа. То, которое возводится в степень, называется основанием степени. То, что показывает, в какую степень возводится основание, называется показателем степени. А то, что получается в результате, просто степенью.

Так вот, отгадывая степень числа, жонглёр-мнемотехник всякий раз представлял её в виде суммы последовательных нечётных чисел, количество которых равно основанию степени. Например, отгадав число 8, он представил его в виде суммы 3+5. И так как 8 — это два в кубе(23), то и участвовало в сумме два последовательных нечётных слагаемых. Они-то и зажглись на двух дисках, которыми жонглировал мнемотехник.

Точно так отгадал он число 81, представив его в виде суммы трёх слагаемых: 25+27+29. Ведь 81 это четвёртая степень трёх (З4)! За этим числом последовало другое — 16, то есть 42, потом 125 (53)… И всякий раз число дисков менялось в зависимости от основания степени, а значит, и от числа слагаемых, на которые она разложена.

— Интересный фокус! — одобрила девочка. — Каково основание, столько и дисков.

Но я сказал, что это не фокус, а правило. И я могу его доказать. Фокус же состоит в том, что жонглёр отгадывал задуманные степени, да ещё стоя на бегущей лошади. И вот этого я нипочём бы не смог. Даже сидя верхом на стуле.

Жонглёра сменили воздушные гимнасты. Они тоже делали несколько дел сразу: кувыркались под куполом и заодно показывали действия с обыкновенными дробями. Это было красивое зрелище. Под звуки «Лунного вальса» разноцветные прожекторы выхватывали из темноты стройные фигуры в светящихся костюмах, на которых всякий раз вспыхивали другие числа. Воздушные дроби преображались на глазах: делились, умножались, сокращались, менялись числителями и знаменателями.

Покончив с обыкновенными дробями, гимнасты перешли к десятичным, и в воздухе замелькали нули, запятые, знаки приближения. Завершился номер, как водится, самым эффектным трюком: периодической дробью.

Стол находок утерянных чисел - _018.jpg

Музыка смолкла. В темноте вспыхнуло числовое выражение «4:39 = 0, ». Несколько мгновений оно висело в воздухе неподвижно, затем к запятой одна за другой пристроились цифры 1, 0, 2, 5, 6, 4. Секунда передышки — и к этим шести цифрам снова пристроились те же: 102564. И ещё раз. И ещё раз. Теперь над манежем висело длиннющее число 0,102564102564102564102564… Но вот оно погасло, и вместо него вспыхнули только первые шесть цифр, стоящие после запятой: это шестеро гимнастов выстроились на одной широкой трапеции. Грянула барабанная дробь, и трапеция поплыла по кругу. Сперва медленно, потом быстрей, быстрей. Вместе с ней закружились, замелькали цифры 102564, образуя одно нескончаемое число с повторяющимся числовым периодом. Наконец движение стало таким быстрым, что уже ничего не разобрать. Всё смешалось, слилось в одно светящееся кольцо…

И вдруг оно погасло. На несколько секунд цирк погрузился в полную тьму. А когда его залило светом, гимнасты были уже внизу, на манеже…

1 ... 10 11 12 13 14 15 16 17 18 ... 22 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название