В помощь радиолюбителю. Выпуск 13
В помощь радиолюбителю. Выпуск 13 читать книгу онлайн
В данном выпуске приведены краткие описания и принципиальные схемы конструкций, ранее опубликованных в радиолюбительско
й литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Данное универсальное зарядное устройство для NiCd и NiMH аккумуляторов представляет собой регулятор, выполненный на микросхеме типа MC33340D. Принципиальная схема прибора приведена на рис. 7.
Рис. 7. Принципиальная схема универсального зарядного устройства для Ni-Cd и Ni-MH аккумуляторов
Сразу после подключения питающего напряжения универсальное зарядное устройство начинает работать в режиме ускоренной зарядки.
В том случае, если аккумулятор не подключен или неисправен, напряжение на выводе 1 (VSEN) микросхемы IC2 (MC33340D) будет либо меньше величины 1 В, либо больше, чем 2 В. При этом зарядное устройство автоматически переключится в обычный режим. В обычный режим работы данное зарядное устройство переключится и в том случае, если в течение 177 с на клеммах заряжаемого аккумулятора будет зафиксировано падение напряжения определенной величины, что свидетельствует об окончании процесса зарядки. Помимо этого переключение в обычный режим может осуществляться по окончании выбранного времени зарядки, или же при повышении температуры аккумулятора сверх допустимой нормы.
Время зарядки аккумуляторной батареи выбирается с помощью установки или удаления перемычек Т1-Т3. Зависимость времени зарядки от установки перемычек приведена в табл. 1.
При выборе режима зарядки с отключением при повышении температуры аккумулятора сверх допустимой нормы для измерения температуры аккумуляторной батареи к выводу 6 (Т2) микросхемы IC2 следует подключить терморезистор величиной 10 кОм. При этом к выводам 7 (Т1) и 5 (Т3) микросхемы IC2 должны быть подключены резисторы R7 и R8, с помощью которых устанавливается диапазон допустимых температур аккумулятора. Величина сопротивления резистора R7 определяет максимальную допустимую температуру, а величина сопротивления резистора R8 определяет минимальную допустимую температуру аккумуляторной батареи.
Если в процессе зарядки аккумулятора его температура будет находиться в выбранном диапазоне, то аккумулятор будет заряжаться в ускоренном режиме. В этом случае напряжение на выводах 7 (Т1), 6 (Т2) и 5 (ТЗ) микросхемы IC2 будет в пределах от 0 В до величины (Vсс — 0,7) В, где Vсс — напряжение питания микросхемы IC2 (вывод 8). Если же температура аккумулятора во время зарядки изменится и выйдет из выбранного диапазона, то изменится напряжение на выводе 7 (Т1) или 5 (Т3) микросхемы IC2, и зарядное устройство переключится в обычный режим.
Поскольку ток, протекающий через выводы 7 (Т1), 6 (Т2) и 5 (Т3) микросхемы IC2 составляет примерно 30 мкА, рассчитать значения величин сопротивлений резисторов R7 и R8 довольно просто. Так, например, если сопротивление термистора R10 при минимальной выбранной температуре составляет 8,2 кОм, то и величина сопротивления резистора R8 должна быть 8,2 кОм. Если сопротивление термистора R10 при максимальной выбранной температуре составляет 15 кОм, то и величина сопротивления резистора R7 должна быть 15 кОм.
Таким образом, при выборе режима зарядки с отключением при повышении температуры аккумулятора предлагаемая схема обеспечивает ускоренную зарядку аккумуляторной батареи только в том случае, если ее температура не выходит за установленные границы. Если в процессе зарядки температура аккумулятора станет меньше минимального предела, то зарядное устройство переключится в обычный режим, и аккумулятор будет заряжаться малым током дежурного режима до тех пор, пока его температура не войдет в норму.
Если же температура аккумулятора станет больше максимального предела, то зарядное устройство также переключится в обычный режим, но не выйдет из него до отключения аккумулятора.
В том случае, если выбран режим, при котором окончание зарядки определяется истечением определенного промежутка времени, резисторы R7, R8 и терморезистор R10 не устанавливаются, а время зарядки выбирается с помощью установки перемычек Т1-Т3 в соответствии с табл. 1. Этот вариант зарядки используется как запасной, то есть в том случае, если по каким-либо причинам нельзя провести окончание зарядки с помощью контроля падения напряжения на аккумуляторе.
Микросхема IC1 (LM317) в предлагаемой конструкции используется в качестве источника постоянного тока. Такая схема включения должна обеспечить постоянное напряжение величиной 1,2 В между выводами ADJ и OUT данной микросхемы. Поскольку между указанными выводами включен резистор R3, через который протекает ток зарядки, этот ток всегда будет иметь величину, при которой падение напряжения на резисторе R3 равно 1,2 В.
Для корректного распознавания момента окончания зарядки аккумулятора при падении напряжения на его контактах необходимо обеспечить наличие на выводе 1 (Vsen) микросхемы IC2 напряжения, соответствующего напряжению одного элемента аккумуляторной батареи. Для этого используется делитель напряжения, выполненный на резисторах R1 и R2. Так, например, если выбрать величину сопротивления резистора R1 равной 10 кОм, величину сопротивления резистора R2 следует рассчитать по следующей формуле:
R2 = R1 x (Vakk/Vsen- 1)
где:
Vakk - общее номинальное напряжение аккумуляторной батареи;
Vsen- напряжение на выводе 1 микросхемы IC2, которое должно составлять 1,2 В.
При этом общее напряжение аккумуляторной батареи рассчитывается по формуле:
Vakk = N x Ui
где:
N — количество элементов в аккумуляторной батарее;
Ui — напряжение одного элемента, которое обычно составляет 1,2 В.
Так, например, при величине сопротивления резистора R1, равной 10 кОм, для аккумулятора, состоящего из шести элементов, величина сопротивления резистора R2 будет составлять:
R2 = 10 000 х (7,2/1,2–1) = 50 кОм
Если же предполагается заряжать один элемент, то резистор R1 не устанавливается, а величина сопротивления резистора R2 должна составлять 10 кОм.
В то же время изменение количества элементов в заряжаемой аккумуляторной батарее требует изменения напряжения Uпит поступающего от источника питания данного устройства. При этом минимальная величина напряжения источника питания рассчитывается по формуле:
Uпит= 3 + 2N,
где:
N — количество элементов в аккумуляторной батарее.
Зависимость значений величин резисторов R1 и R2, а также питающего напряжения от количества заряжаемых элементов приведена в табл. 2.
Необходимо отметить, что соответствующие значения величины напряжения Uпит при зарядке указанного в табл. 2 количества элементов могут быть и выше, однако это потребует дополнительного охлаждения микросхемы IC1, например, с помощью установки ее на радиатор.
Питающее напряжение микросхемы IC2 должно быть в пределах 3-18 В. В том случае, если потребуется одновременно заряжать большее количество элементов, то необходимо обеспечить, чтобы питающее напряжение микросхемы на выводе 8 микросхемы IC2 не превысило величины 18 В. При этом напряжение на выводах 2 и 3 микросхемы IC2 не должно превышать величину 20 В.
Значение величины тока зарядки в обычном режиме (Iор) рассчитывается по формуле:
Iор = (Uпит — UD2 — Uakk)/R5