-->

Шаг за шагом. Транзисторы

На нашем литературном портале можно бесплатно читать книгу Шаг за шагом. Транзисторы, Сворень Рудольф Анатольевич-- . Жанр: Радиоэлектроника. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Шаг за шагом. Транзисторы
Название: Шаг за шагом. Транзисторы
Дата добавления: 16 январь 2020
Количество просмотров: 779
Читать онлайн

Шаг за шагом. Транзисторы читать книгу онлайн

Шаг за шагом. Транзисторы - читать бесплатно онлайн , автор Сворень Рудольф Анатольевич
Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов. Поскольку книга больше ориентирована на детей, то повествование идет буквально "нa пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 19 20 21 22 23 24 25 26 27 ... 85 ВПЕРЕД
Перейти на страницу:

До каких же пор можно увеличивать сопротивление нагрузки Rн в погоне за большим выходным напряжением? Здесь есть два ограничения, но нам пока достаточно познакомиться хотя бы с одним.

Вся коллекторная цепь нашего транзисторного усилителя, по сути дела, представляет собой делитель напряжения. Делитель этот состоит из двух основных участков — нагрузки и коллекторного перехода, и напряжение коллекторной батареи Бк делится между этими двумя участками. Поэтому, увеличивая Rн можно дойти до того, что все напряжение достанется именно этому сопротивлению, а на коллекторе (точнее, на коллекторном переходе) вообще не останется никакого напряжения (рис. 38).

Шаг за шагом. Транзисторы - _65.jpg

Рис. 38. При слишком большом сопротивлении нагрузки постоянное напряжение на коллекторе может упасть до нуля.

А это в свою очередь означает, что, увеличивая Rн, нужно всегда учитывать и величину сопротивления коллекторного перехода. Если, например, окажется, что сопротивление коллекторного перехода имеет ту же величину, что и Rн — его можно назвать выходным сопротивлением транзистора Rвых,— то каждому из этих участков достанется половина напряжения, а с этим еще вполне можно мириться.

Чуть позже мы подробно остановимся на том, что представляет собой выходное сопротивление транзистора. Мы узнаем, что оно может быть различным для постоянного и переменного тока, что величина его зависит и от режима входной цепи (это, собственно говоря, нам уже известно — входная цепь в основном тем и занимается, что меняет сопротивление коллекторного pn-перехода, — впрыскивая в него, разумеется через базу, свободные заряды). Пока же мы ограничимся некоторым общим высказыванием: выходное сопротивление транзистора весьма велико, коллекторный переход, по сути дела, представляет собой диод, включенный в обратном направлении. Во всяком случае, в коллекторную цепь транзистора малой мощности можно смело включить нагрузку с сопротивлением в несколько килоом, не опасаясь серьезных неприятностей, в том числе слишком сильного уменьшения напряжения на самом коллекторе. Для определенности примем, что в коллекторную цепь нашего транзистора включена нагрузка Rн = 10 ком. Это вполне реальная цифра.

Мы ограничили сопротивление резистора Rн из боязни потерять на нем слишком большую часть постоянного коллекторного напряжения и оставить слишком малое постоянное напряжение на самом коллекторе. Но можно ведь вместо резистора Rн включить в коллекторную цепь такой элемент, который будет представлять очень большое сопротивление для переменного тока и очень малое — для постоянного. Примером такого элемента может служить уже знакомый нам дроссель или трансформатор. Из-за разного сопротивления для переменной и постоянной составляющих коллекторного тока (возможные величины этих сопротивлений 50 ком и 5 ом) на этом элементе будет создаваться большое переменное напряжение и почти не будет теряться постоянное (рис. 38).

Это, конечно, позволит безболезненно увеличить сопротивление нагрузки, но опять-таки не до бесконечности. Избавившись от опасности слишком уменьшить постоянное напряжение на коллекторе, мы столкнемся с другими ограничениями (о них будет рассказано на стр. 179) и все равно не сможем увеличить сопротивление нагрузки больше чем до нескольких десятков килоом.

Итак, в коллекторную цепь включена нагрузка с сопротивлением 10 ком. Теперь еще одна цифра: сопротивление эмиттерного pn-перехода Rвх примем равным 10 ом. Это тоже вполне реальная величина: эмиттерный переход транзистора представляет собой диод, включенный в прямом направлении, а сопротивление такого диода как раз и составляет единицы или десятки ом.

Теперь мы наконец можем сравнить мощность входного и выходного сигналов и вынести окончательный приговор транзистору, можем определить, «усиливает» или «не усиливает».

Мощность входного сигнала выделяется на сопротивлении Rвх, мощность выходного сигнала — на сопротивлении Rн. На этих же сопротивлениях действуют соответственно входное и выходное напряжение Uсиг и Uвых. Токи Iэ~ и Iк~, протекающие по сопротивлениям Rвх и Rн, примерно равны, а значит, соотношение между напряжениями Uсиг и Uвых определяется только соотношением сопротивлений Rвх и Rн. В нашем примере сопротивление нагрузки Rн в тысячу раз больше, чем сопротивление Rвх, и поэтому напряжение Uвых также в тысячу раз больше, чем Uсиг. Иными словами, наш каскад дает усиление по напряжению в тысячу раз. А поскольку мощность сигнала — это произведение напряжения на ток (P = U·I) и поскольку токи Iэ~ и Iк~, как мы уже говорили, равны, то усиление по мощности также равно тысяче. Это реальные цифры: примерно такое усиление можно получить в нашей схеме от среднего по своим параметрам транзистора.

Вот и конец долгого путешествия. Мы не ошиблись, воскликнув в свое время: «Земля!» Построенный нами из двух диодов трехслойный полупроводниковый прибор — транзистор — действительно может создавать мощную копию слабого электрического сигнала, используя для этой цели энергию источника постоянного тока.

Достигнув заветной цели, ни один путешественник не откажет себе в удовольствии вспомнить самые интересные, самые важные этапы пройденного пути. Давайте же и мы подведем итог своего трудного и долгого путешествия от диода до ода. А заодно уже коротко, буквально в двух словах, подытожим все, что успели узнать о транзисторе.

Слабый электрический сигнал, который нужно усилить, мы вводим в эмиттерную цепь транзистора. Она представляет собой pn-переход, который с помощью вспомогательного постоянного напряжения (смещения) всегда включен в прямом направлении. Сопротивление такого перехода невелико, и поэтому входной сигнал довольно легко изменяет эмиттерный ток. Заряды, образующие этот ток, в результате диффузии просачиваются сквозь базу и попадают во второй, в коллекторный pn-переход. Этот переход включен в обратном направлении, и сопротивление его очень велико. Попав из базы в коллекторный переход, свободные заряды уменьшают его сопротивление. Под действием усиливаемого сигнала число этих зарядов меняется, а значит, сопротивление коллекторного перехода тоже меняется, следуя по пятам за всеми изменениями сигнала.

Теперь батарея, в цепь которой включен коллекторный переход, уже отдает энергию не в виде постоянного, а в виде меняющегося тока — копии слабого сигнала. Если на пути этого меняющегося тока (то есть в коллекторную цепь транзистора) включить нагрузку Rн и если сделать ее сопротивление достаточно большим, то на этой нагрузке можно получить большое по величине меняющееся напряжение. Во всяком случае, во много раз большее, чем напряжение сигнала, подведенного к эмиттеру. Так создается усиление по напряжению, а значит, и усиление по мощности. Эффект усиления получается за счет того, что входной ток, действующий в цепи с малым сопротивлением, создает такой же по величине изменяющийся ток в цепи с большим сопротивлением. Именно исходя из этого и назвали транзистор преобразователем (переносчиком) сопротивлений.

Глубокий смысл этого названия станет особенно хорошо понятным, если попытаться включить нагрузку не в коллекторную, а в эмиттерную цепь, а коллектор вместе с батареей для упрощения просто выбросить из схемы. В таком поступке есть даже какая-то логика: если коллекторный ток, проходя по сопротивлению нагрузки, создает на нем большое выходное напряжение, то, очевидно, и эмиттерный ток, который, как мы уже много раз подчеркивали, по величине равен коллекторному, создаст на нагрузке такое же большое напряжение, и мы извлечем необходимую мощность прямо из источника слабого сигнала, без всякого транзистора.

1 ... 19 20 21 22 23 24 25 26 27 ... 85 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название