Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 549
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 5 6 7 8 9 10 11 12 13 ... 70 ВПЕРЕД
Перейти на страницу:

по всем частицам тела. Но скорость v каждой частицы связана с угловой скоростью wтвердого тела. Предположим, что тело вращается относительно центра масс, который мы будем счи­тать покоящимся. Если при этом r — положение частицы отно­сительно центра масс, то ее скорость v задается выражением wXr. Поэтому полная кинетическая энергия равна

к. э.=S1/2m(wX г)2. (31.18)

Единственное, что нужно теперь сделать,— это переписать wXr через компоненты wх, wy , wz и координаты х, у, z, а за­тем сравнить результат с уравнением (31.17); приравнивая коэффициенты, найдем Iij. Проделывая всю эту алгебру, мы пишем:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _38.jpg

Умножая это уравнение на m/2, суммируя по всем частицам и сравнивая с уравнением (31.17), мы видим, что Ixx, напри­мер, равно

Фейнмановские лекции по физике. 7. Физика сплошных сред - _39.jpg

Это и есть та формула для момента инерции тела относительно оси х, которую мы получали уже раньше (гл. 19, вып. 2).

Ну а поскольку r2 =x2+y2+z2, то эту же формулу можно написать в виде

Ixx=Sm(r2-x2). Выписав остальные члены тензора инерции, получим

Фейнмановские лекции по физике. 7. Физика сплошных сред - _40.jpg

Если хотите, его можно записать в «тензорных обозначе­ниях»:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _41.jpg

где через ri обозначены компоненты (х, у, z) вектора положе­ния частицы, а 2 означает суммирование по всем частицам. Таким образом, момент инерции есть тензор второго ранга, элементы которого определяются свойствами тела и который связывает момент количества движения L с угловой ско­ростью w:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _42.jpg

Для любого тела независимо от его формы можно найти эл­липсоид энергии, а следовательно, и три главные оси. Относи­тельно этих осей тензор будет диагональным, так что для лю­бого объекта всегда есть три ортогональные оси, для которых момент количества движения и угловая скорость параллельны друг другу. Они называются главными осями инерции.

§ 5. Векторное произведение

Сами того не подозревая, вы пользуетесь тензором второго ранга уже начиная с гл. 20 (вып. 2). В самом деле, мы опреде­лили там «момент силы, действующий в плоскости», например txy, следующим образом:

txy=xFy-yFx.

Обобщая это определение на три измерения, можно написать

tij=riFj-rjFi. (31.22)

Как видите, величина tij — это тензор второго ранга. Один из способов убедиться в этом — свернуть tij с каким-то век­тором, скажем с единичным вектором е, т. е. составить

Фейнмановские лекции по физике. 7. Физика сплошных сред - _43.jpg

Если эта величина окажется вектором, то tijдолжен преобра­зовываться как тензор — это просто наше определение тензора. Подставляя выражение для tij, получаем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _44.jpg

Поскольку скалярные произведения, естественно, являются скалярами, то оба слагаемых в правой части — векторы, как и их разность. Так что tij-— действительно тензор.

Однако tijпринадлежит к особому сорту тензоров, он антисимметричен, т. е.

tij=-tji.

Поэтому у такого тензора есть только три разные и неравные нулю компоненты: txy, tyz и tzz. В гл. 20 (вып. 2) нам удалось показать, что эти три члена почти «по счастливой случайности» преобразуются подобно трем компонентам вектора; поэтому мы могли тогда определить вектор

t=(tx,. ty, tz) = (tyz, tzx, txy).

Я сказал «по случайности» потому, что это происходит только в трехмерном пространстве. Например, для четырех измерений антисимметричный тензор второго ранга имеет шесть различных ненулевых членов, и его, разумеется, нельзя заменить векто­ром, у которого компонент только четыре.

Точно так же как аксиальный вектор t==rXF является тен­зором, по тем же соображениям тензором будет и любое век­торное произведение двух полярных векторов. К счастью, они тоже представимы в виде вектора (точнее, псевдовектора), что немного облегчает нам всю математику.

Вообще говоря, для любых двух векторов а и b девять ве­личин aibjобразуют тензор (хотя для физических целей он не всегда может быть полезен). Таким образом, для вектора по­ложения r величины rirjявляются тензором, а поскольку dij. тоже тензор, то мы видим, что правая часть (31.20) действитель­но является тензором. Подобным же образом тензором будет и (31.22), так как оба члена в правой части — тензоры.

§ 6. Тензор напряжений

Встречавшиеся до сих пор симметричные тензоры возникали как коэффициенты, связывающие один вектор с другим. Сей­час я познакомлю вас с тензором, имеющим совершенно другой физический смысл,— это тензор напряжений. Предположим, что на твердое тело действуют различные внешние силы. Мы говорим, что внутри тела возникают различные «напряжения», имея при этом в виду внутренние силы между смежными частями материала. Мы уже гово­рили немного о подобных на­пряжениях в двумерном случае, когда рассматривали поверхностное натяжение напряженной диафрагмы (см. гл. 12, § 3, вып. 5). А теперь вы увидите, что внутренние силы в материале трехмерного тела записываются в виде тензора.

Рассмотрим тело из какого-то упругого материала, например брусок из желе. Если мы разрежем этот брусок, то материал на каждой стороне разреза будет, вообще говоря, претерпевать перемещение под действием внутренних сил. До того как был сделан разрез, между двумя этими частями должны были дейст­вовать силы, которые удерживали обе части в едином куске; мы можем выразить напряжение через эти силы. Представьте себе, что мы смотрим на воображаемую плоскость, перпендику­лярную оси х, подобную плоскости s на фиг. 31.5, и интересуем­ся силами, действующими на маленькой площадке Dy/Dz, рас­положенной в этой плоскости.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _45.jpg

Фиг. 31.5. Материал, находящийся слева от плоскости s на площади Dy/Dz, действует на материал, нахо­дящийся справа, с силой DF1.

Материал, находящийся слева от площадки, действует на материал с правой стороны с силой DF1 (фиг. 31.5, б). Есть, конечно, и обратная реакция, т.е. на материал слева от поверхности действует сила —DF1. Если площадка достаточно мала, то мы ожидаем, что сила DF1 про­порциональна площади Dy/Dz.

Вы уже знакомы с одним видом напряжений — статическим давлением жидкости. Там сила была равна давлению, умно­женному на площадь, и направлена под прямым углом к элементу поверхности. Для твердого тела, а также движущей­ся вязкой жидкости сила не обязательно перпендикулярна по­верхности: помимо давления (положительного или отрицатель­ного), появляется еще и сдвигающая сила. (Под «сдвигающей» силой мы подразумеваем тангенциальные компоненты сил, действующих на поверхности.) Для этого нужно учитывать все три компоненты силы. Заметьте еще, что если раз­рез мы сделаем по плоскости с какой-то другой ориента­цией, то действующие на ней силы тоже будут другими. Полное описание внутренних напряжений требует применения тензоров.

1 ... 5 6 7 8 9 10 11 12 13 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название