Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 610
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

§ 4. Обтекание кругового цилиндра

Вернемся теперь обратно к задаче об обтекании цилиндра медленным (почти несжимаемым) потоком. Я дам вам качест­венное описание потока реальной жидкости. О таком потоке нам необходимо знать множество вещей. Например, какая увлекающая сила действует на цилиндр? Сила, увлекающая цилиндр, показана на фиг. 41.4 как функция величины

Фейнмановские лекции по физике. 7. Физика сплошных сред - _506.jpg
, ко­торая пропорциональна скорости V, если все остальное фиксировано.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _507.jpg

Фиг. 41.4. Коэффициент увлечения Сd кругового цилиндра как функция числа Рейнольдса.

Фактически на рисунке отложен коэффициент увлече­ния Сdбезразмерное число, равное отношению силы к 1/2rV2Dl (d — диаметр, l —длина цилиндра, а r —плотность жидкости):

Фейнмановские лекции по физике. 7. Физика сплошных сред - _508.jpg

Коэффициент увлечения изменяется довольно сложным обра­зом, как бы намекая нам на то, что в потоке происходит нечто интересное и сложное. Свойства потока полезно описывать для различных областей изменения числа Рейнольдса. Прежде всего, когда число Рейнольдса очень мало, поток вполне ста­ционарен, скорость в любой точке потока постоянна и он плавно обтекает цилиндр. Однако распределение линий потока не похоже на их распределение в потенциальном потоке. Они описывают решение несколь­ко другого уравнения. Когда скорость очень мала или, что эквивалентно, вязкость очень ве­лика, так что вещество по своей консистенции напоминает мед, можно отбросить инерционные члены и описать поток уравнением

Фейнмановские лекции по физике. 7. Физика сплошных сред - _509.jpg

Это уравнение впервые было решено Стоксом. Он также решил задачу для сферы. Когда маленькая сфера движется при малых числах Рейнольдса, то к ней приложена сила, равная 6phaV, где арадиус сферы, a V — его скорость.

Это очень полезная формула: она говорит нам о скорости, с которой мельчайшие частички, которые приближенно можно считать шариками, движутся в жидкости под действием данной силы, как, например, в центрифуге, или при осаждении, или, наконец, в процессе диффузии. В области малых чисел Рей­нольдса, т. е. при

Фейнмановские лекции по физике. 7. Физика сплошных сред - _510.jpg
<1, линии v вокруг цилиндра имеют такой вид, как на фиг. 41.5.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _511.jpg

Фиг. 41.5. Вязкий поток вблизи цилиндра (малая вязкость).

Если теперь мы увеличим скорость потока, так что число Рейнольдса станет несколько больше единицы, то увидим, что поток изменится.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _512.jpg

Фиг. 41.6. Поток, обтекающий цилиндр, при различных числах Рейнольдса.

Как показано на фиг. 41.6, б, за сферой воз­никнут вихри. До сих пор неясно, существовали ли вихри и при малых числах Рейнольдса или же они возникли неожиданно при некотором определенном числе? Обычно считали, что циркуляция нарастает постепенно. Однако теперь думают, что скорее она проявляется неожиданно и возрастает с увеличе­нием

Фейнмановские лекции по физике. 7. Физика сплошных сред - _513.jpg
. Во всяком случае, поток в районе от
Фейнмановские лекции по физике. 7. Физика сплошных сред - _514.jpg
=10 до
Фейнмановские лекции по физике. 7. Физика сплошных сред - _515.jpg
=30 меняет свой характер. За цилиндром образуется пара вихрей.

Когда число Рейнольдса проходит через значения в районе 40, поток снова меняется. Характер движения претерпевает не­ожиданное и резкое изменение. Один из вихрей за цилиндром становится настолько длинным, что он отрывается и плывет вниз по течению вместе с жидкостью. При этом жидкость за цилиндром снова закручивается и возникает новый вихрь. Эти вихри поочередно отслаиваются то с одной, то с другой стороны, так что в какой-то момент поток выглядит приблизи­тельно так, как показано на фиг. 41.6, в. Такой поток вихрей называется вихревой цепочкой Кармана. Она всегда появляется для чисел Рейнольдса

Фейнмановские лекции по физике. 7. Физика сплошных сред - _516.jpg
>40. Фотография такого потока пока­зана на фиг. 41.7.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _517.jpg

Фиг. 41.7. Фотография цепочки вихрей в потоке за цилиндром.

Разница в режиме между двумя потоками, изображенными на фиг. 41.6, а, б или в, очень велика. На фиг. 41.6, а и б скорость постоянна, тогда как на фиг. 41,6, в скорость в любой точке изменяется со временем. Выше

Фейнмановские лекции по физике. 7. Физика сплошных сред - _518.jpg
=40 стационар­ное решение отсутствует; граница перехода отмечена на фиг. 41.4 пунктирной линией. Для таких более высоких чисел поток изменяется со временем некоторым регулярным периодическим образом. Создаются вихри.

Можно представить себе физическую причину возникновения этих вихрей. Мы знаем, что на поверхности цилиндра скорость жидкости должна быть равна нулю, но при удалении от поверх­ности скорость быстро возрастает. Это большое местное изменение скорости жидкости и создает вихри. Когда скорость основного потока достаточно мала, у вихрей хватает времени, чтобы продиффундировать из тонкого слоя вблизи поверхности твердого тела, где они создаются, и «расплыться» на большую область. Эта физическая картина должна подготовить нас к сле­дующему изменению природы потока, когда скорость основ­ного потока или число

Фейнмановские лекции по физике. 7. Физика сплошных сред - _519.jpg
увеличивается еще больше.

По мере возрастания скорости у вихря остается все меньше и меньше времени, чтобы «расплываться» на большую область жидкости. К тому моменту, когда число Рейнольдса достигнет нескольких тысяч, вихри начинают заполнять тонкую ленту (фиг. 41.6, г). В таком слое поток хаотичен и нерегулярен. Такая область называется пограничным слоем, и этот нерегуляр­ный поток с увеличением

Фейнмановские лекции по физике. 7. Физика сплошных сред - _520.jpg
пробивает себе путь все дальше и дальше вниз по течению. В области турбулентности скорости очень нерегулярны и «беспорядочны», вдобавок поток больше не двумерный — он крутится во всех трех измерениях. Кроме того, на турбулентное движение налагается еще регулярное переменное движение.

При дальнейшем увеличении числа Рейнольдса область турбулентности пробирается вперед, пока при потоке с

Фейнмановские лекции по физике. 7. Физика сплошных сред - _521.jpg
, превышающим 105, не достигнет места, где линии тока огибают цилиндр. При этом поток будет похож на то, что показано на фиг. 41.6, д, и мы получаем так называемый «турбулентный след». Кроме того, происходят еще коренные изменения в силе увлечения — она, как видно из фиг. 41.4, сильно падает. При таких скоростях увлекающая сила с возрастанием скорости действительно уменьшается. По-видимому, здесь про­является некоторое стремление к периодичности.

А что происходит при еще больших числах Рейнольдса? С дальнейшим увеличением скорости размер области турбулент­ности снова увеличивается и сила сопротивления возрастает. Последние эксперименты, которые дошли до области R=107 или несколько больше, показывают, что в турбулентной области появляется новая периодичность, быть может, потому, что вся область колеблется вперед и назад в общем движении, а может быть, из-за нового сорта вихрей, которые появляются вместе с нерегулярным «шумовым» движением. Детали его полностью еще не ясны, и они до сих пор изучаются экспериментально.

§ 5. Предел пулевой вязкости

Мне бы хотелось подчеркнуть, что ни один из описанных нами потоков ни в каком отношении не похож на решение урав­нения потенциального потока, о котором говорилось в преды­дущей главе. На первый взгляд это очень удивительно. Ведь R в конце концов пропорционально 1/h. Так что предел h®0 эквивалентен пределу R®Ґ. И если мы перейдем к пределу больших R в (41.23), то избавимся от правой части и получим как раз уравнения из предыдущей главы. Но все же трудно поверить, что сильно турбулентный поток с R=107 хоть в ка­кой-то степени приближается к гладкому потоку, вычисленному из уравнений «сухой» воды. Как может случиться, что при R=Ґ поток, описываемый уравнением (41.23), дает реше­ние, полностью отличное от решения, полученного при h=0, с которого мы начали? Ответ очень интересен. Обратите вни­мание, что в правой части (41.23) стоит произведение 1/R на вторую производную. Это наиболее высокая степень производной в уравнении: слева только первые производные. Получается так, что, хотя коэффициент 1/R становится малым, W в пространстве вблизи поверхности претерпевает очень быстрые изменения. Эти резкие изменения компенсируют малость коэффициента, и про­изведение с увеличением R не стремится к нулю. Поэтому, хотя коэффициент при С2W стремится к нулю, решения не приближа­ются к предельному случаю.

Перейти на страницу:
Комментариев (0)
название