Фейнмановские лекции по физике. 9. Квантовая механика II
Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
где
и смотрим, не удастся ли найти такой оператор х, чтобы он создавал состояние |a>, при котором уравнение (18.34) не противоречит уравнению (18.33). Иначе говоря, мы должны найти такое |a>, чтобы было
Разложим сперва <y|a> по x-представлению:
Сравним затем интегралы в (18.36) и (18.37). Вы видите, что в х-представлении (и только в этом представлении)
Воздействие на |y> оператора х^ для получения |a> равнозначно умножению y (x)=<x|y> на х для получения a (х)=<x|a>. Перед нами определение оператора х^ в координатном представлении.
(Мы не задавались целью получить x-представление матрицы оператора х^. Если вы честолюбивы, попытайтесь показать, что
Тогда вы сможете доказать поразительную формулу
т. е. что оператор х^ обладает интересным свойством: когда он действует на базисное состояние |x>, то это равнозначно умножению на х.)
А может, вы хотите знать среднее значение x2? Оно равно
Или, если желаете, можно написать и так:
где
Под x^2 подразумевается х^х^ — два оператора применяются друг за другом. С помощью (18.42) можно подсчитать <x2>ср, пользуясь каким угодно представлением (базисными состояниями). Если вам нужно знать среднее значение хnили любого многочлена по х, то вы легко это теперь проделаете.
§ 5. Оператор импульса
Теперь мы хотим рассчитать средний импульс электрона, опять начав с одномерного случая. Пусть Р(р)dp — вероятность того, что измерение приведет к импульсу в интервале между р и p+dp. Тогда
Обозначим теперь через <р|y> амплитуду того, что состояние |y> есть состояние с определенным импульсом |р>. Это та же самая амплитуда, которую в гл. 14, § 3, мы обозначали <имп.р|y>; она является функцией от р, как <x|y> является функцией от х. Затем мы выберем такую нормировку амплитуды, чтобы было
Тогда получится

что очень похоже на то, что мы имели для <x>ср.
При желании можно продолжить ту же игру, которой мы предавались с <x>ср. Во-первых, этот интеграл можно записать так:

Теперь вы должны узнать в этом уравнении разложение амплитуды <y|b> — разложение по базисным состояниям с определенным импульсом. Из (18.45) следует, что состояние |b> определяется в импульсном представлении уравнением
Иначе говоря, теперь можно писать
причем
где оператор р^ определяется на языке p-представления уравнением (18.47).
[И опять при желании можно показать, что матричная запись р^ такова:
и что
Выводится это так же. как и для х.
Теперь возникает интересный вопрос. Мы можем написать <р>ср так, как мы это сделали в (18.45) и (18.48); смысл оператора р^ в импульсном представлении нам тоже известен. Но как истолковать р^ в координатном представлении? Это бывает нужно знать, если у нас есть волновая функция y (x)и мы собираемся вычислить ее средний импульс. Позвольте более четко пояснить, что имеется в виду. Если мы начнем с того, что зададим <p>cp уравнением (18.48), то это уравнение можно будет разложить по p-представлению и вернуться к (18.45). Если нам задано p-представление состояния, а именно амплитуда <p|y> как алгебраическая функция импульса p, то из (18.47) можно получить <p|b> и продолжить вычисление интеграла. Вопрос теперь в следующем: а что делать, если нам задано описание состояния в x-представлении, а именно волновая функция y (x)=<x|y>?
Ну что ж, начнем раскладывать (18.48) в x-представлении.
Напишем
Но теперь надо знать другое: как выглядит состояние |b> в x-представлении. Если мы узнаем это, мы сможем взять интеграл. Итак, наша задача — найти функцию b (x)=<x|b>. Ее можно найти следующим образом. Мы видели в гл. 14, § 3, как <р|b> связано с <x|b>. Согласно уравнению (14.24),
Если нам известно <р|b>, то, решив это уравнение, мы найдем <x|b>. Но результат, конечно, следовало бы как-то выразить через y (x)=<x|y>, потому что считается, что именно эта величина нам известна. Будем теперь исходить из (18.47) и, опять применив (14.24), напишем
Интеграл берется по х, поэтому р можно внести под интеграл
Теперь сравним это с (18.53). Может быть, вы подумали, что <x|b> равно py(x)? Нет, напрасно! Волновая функция <х|b>=b(x) может зависеть только от х, но не от р. В этом-то вся трудность.
К счастью, кто-то заметил, что интеграл в (18.55) можно проинтегрировать по частям. Производная e-ipx/hпо х равна (-i/h)pe-ipx/h, поэтому интеграл (18.55) это все равно, что
Если это проинтегрировать по частям, оно превратится в

Пока речь идет только о связанных состояниях, y(x) стремится к нулю при х®±Ґ, скобка равна нулю и мы имеем
А вот теперь сравним этот результат с (18.53). Вы видите, что
Все необходимое, чтобы взять интеграл в (18.52), у нас уже есть. Окончательный ответ таков:
