Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
P=const·e-L/RT. (45.15)
Надо выяснить, в каких отношениях находится это выражение с полученной ранее с помощью кинетической теории зависимостью давления от температуры. Кинетическая теория говорит, хотя и очень неопределенно, что число молекул пара над жидкостью примерно равно
где UG—UL— разность отнесенных к молю внутренних энергий газа и жидкости. Термодинамическое уравнение (45.15) и кинетическое уравнение (45.16) очень похожи, потому что давление равно nkT, но все-таки это разные уравнения. Однако их можно сделать одинаковыми, если заменить старое предположение L=const предположением о том, что L—UG=const. Если предположить, что L—UG — не зависящая от температуры постоянная, то соображения, из которых ранее следовало (45.15), приведут теперь к уравнению (45.16).
Это сравнение показывает преимущества и недостатки термодинамики по сравнению с кинетической теорией. Прежде всего полученное термодинамически уравнение (45.14) — это точное соотношение, а (45.16) — всего-навсего приближение. Ведь нам пришлось предположить, что U приблизительно постоянна и что наша модель верна. Во-вторых, нам, быть может, никогда не удастся понять до конца, как газ переходит в жидкость, и все-таки уравнение (45.14) правильно, а (45.16)— это только приближение. В-третьих, хотя мы говорили о превращении газа в жидкость, наши аргументы верны для любого перехода из одного состояния в другое. Например, переход твердое тело — жидкость описывается кривыми, очень похожими на кривые фиг. 45.3 и 45.4.
Фиг. 45.4. Диаграмма Р — V для цикла Карно с конденсирующимся в цилиндре паром.
Слева — все вещество переходит в жидкость. Чтобы полностью испарить ее при температуре Т, нужно добавить тепла L. При падении температуры от Т до Т—DT пар расширяется адиабатически.
Вводя скрытую теплоту плавления М/моль, мы получим формулу, аналогичную уравнению (45.14): (дPпл/дT)V=M/[T(VL-VS)]. Мы можем не знать ничего о кинетической теории процесса плавления, а все же получить правильное уравнение. Однако если мы узнаем кинетическую теорию, то сразу же получим большое преимущество. Уравнение (45.14) — это всего лишь дифференциальное уравнение, и мы еще совершенно не умеем находить постоянные интегрирования. В кинетической теории можно вычислить и эти постоянные, надо только придумать хорошую модель, описывающую все явление полностью. Итак, в каждой теории есть и хорошее, и плохое. Если познания наши слабы, а картина сложна, то термодинамические соотношения оказываются самым мощным средством. Когда же картина упрощается настолько, что можно ее проанализировать теоретически, то лучше сначала попробовать выжать из этого анализа как можно больше.
Еще один пример: излучение черного тела. Мы уже говорили об ящике, содержащем излучение и ничего больше, и уже толковали о равновесии между излучением и осциллятором.
Мы выяснили также, что когда фотоны ударяются о стенки ящика, они создают давление Р. Мы вывели формулу PV=U/3, где U — полная энергия фотонов, а V — объем ящика. Если подставить U=3РV в основное уравнение (45.7),то обнаружится, что
Поскольку объем ящика не изменяется, можно заменить (дP/дT)Vна dP/dT и получить обыкновенное дифференциальное уравнение. Оно легко интегрируется и дает lnP=4lnT+const, или Р=const·T4. Давление излучения изменяется как четвертая степень температуры, поэтому заключенная в излучении энергия U/V=P/3 тоже меняется как T4. Обычно пишут так: U/V=(4s/с)T4, где с — скорость света, а s— другая постоянная. Термодинамика сама по себе ничего не скажет нам об этой постоянной. Это хороший пример и ее могущества, и ее бессилия. Знать, что U/V изменяется как T4, — это уже большое дело, но узнать, чему именно равно U/V при той или иной температуре, можно, только разобравшись в деталях полной теории. У нас есть теория излучения черного тела и сейчас мы вычислим а.
Пусть I(w)dw — распределение интенсивности, иначе говоря, поток энергии через 1 м2за 1 сек в интервале частот между w и w+dw:
Распределение плотности энергии =
поэтому
U/V=Полная плотность энергии,
(Плотность энергии между w и w+dw),Мы уже успели узнать, что
Подставляя выражение для I (w) в наше уравнение для U/V, получаем
Если сделать замену переменных x=hw/kT, то это выражение примет вид
Этот интеграл — просто-напросто какое-то число, и мы можем найти его приближенно. Для этого надо лишь вычертить подынтегральную кривую и подсчитать площадь под ней. Она приблизительно равна 6,5. Математики могут вычислить наш интеграл точно, он равен p4/15. Сравнивая это выражение с записанным ранее U/V=(4s/с)T4, мы найдем s:
Много ли энергии утечет за 1 сек из дырки единичной площади, проделанной в стенке ящика? Чтобы найти поток энергии, умножим плотность энергии U/V на с. Еще нужно умножить на 1/4; эта четверть набегает вот по каким причинам. Во-первых, l/2появляется из-за того, что мы вычисляем только вырвавшуюся наружу энергию, и, во-вторых, если поток подходит к дырке не под прямым углом, то вырваться ему труднее; это уменьшение эффективности учитывается умножением на косинус угла с нормалью. Среднее значение косинуса равно 1/2. Теперь понятно, почему мы писали U/V=(4s/c)T4: так проще выразить поток энергии сквозь маленькую дырку; если отнести поток к единичной площади, то он равен просто sT4.
* Поскольку (ex-1)-1 =е-x+е-2x +..., то интеграл равен
Но
, поэтому, дифференцируя три раза по n, мы получаем , так что интеграл равен 6 (1+1/16+1/81+...), и несколько первых членов ряда дают уже хорошее приближение. В гл. 50 мы сможем показать, что сумма обратных четвертых степеней целых чисел равна p5/90.