Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
ЕС=nXF. (26.3)
Поэтому мы видим, что если нам удалось правильно выбрать точку С (XCsinEXC =nXCsinXCF) или мы сократили на длину общей гипотенузы ХС и заметили, что
EXC=ECN=qi и XCF=BCN'=qr,
то мы получим
sinqi=nsinqr. (26.4)
Отсюда видно, что при отношении скоростей, равном n, свет должен двигаться из одной точки в другую по такому пути, чтобы отношение синусов qit- и qr было равно отношению скоростей в двух средах.
§ 4. Применения принципа Ферма
Рассмотрим теперь некоторые интересные следствия принципа наименьшего времени. Первое из них — принцип обратимости. Мы уже нашли путь из A в В,требующий наименьшего времени; пойдем теперь в обратном направлении (считая, что скорость света не зависит от направления). Наименьшему времени отвечает та же траектория, и, следовательно, если свет распространяется по некоторому пути в одном направлении, он будет двигаться по этому пути и в обратном направлении.
Другой интересный пример! На пути света под некоторым углом поставлена четырехгранная стеклянная призма с параллельными гранями. Свет проходит из точки А в В и, встретив на своем пути призму (фиг. 26.6), отклоняется, причем длительность пути в призме уменьшается за счет изменения наклона траектории, а путь в воздухе немного удлиняется. Участки траектории вне призмы оказываются параллельными друг другу, потому что углы входа и выхода из призмы одинаковы.
Третье интересное явление состоит в том, что когда мы смотрим на заходящее солнце, то оно на самом деле находится уже ниже линии горизонта! Нам кажется, что солнце еще над горизонтом, а оно фактически уже зашло (фиг. 26.7). Дело здесь в следующем. Земная атмосфера вверху разрежена, а в нижних слоях более плотная. Свет распространяется в воздухе медленнее, чем в вакууме, и поэтому солнечные лучи достигнут какой-то точки за горизонтом быстрее, если будут двигаться не по прямой линии, а по траектории с более крутым наклоном в плотных слоях атмосферы, сокращая таким образом свой путь в этих слоях.
Еще пример того же рода — мираж, который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят на дороге «воду», а когда подъезжают туда, то кругом оказывается все сухо, как в пустыне! Сущность явления в следующем. То, что мы видим в этом случае, это «отраженный» дорогой свет. На фиг. 26.8 показано, как падающий на дорогу луч света попадает к нам в глаз. Почему? Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным, а потому и скорость света в нем больше, чем в холодном.
Фиг.26.6. Луч света, выходящий из прозрачной пластины, параллелен падающему лучу.
Фиг. 26.7. У горизонта Солнце кажется на 1/2 градуса выше, чем на самом деле.
Другими словами, свет быстрее проходит в теплых слоях, чем в холодных. Поэтому свет проходит не по прямой, а идет по траектории с наименьшим временем, заворачивая для этого в теплые слои воздуха, чтобы сократить время. Таким образом, свет идет по кривой.
И еще один пример. Представим себе такую ситуацию, когда весь свет, испускаемый в точке Р, собирается обратно в другую точку Р' (фиг. 26.9). Это означает, конечно, что свет может попасть из точки Р в Р' по прямой линии. Это правильно. Но как устроить так, чтобы свет, идущий от Р к Q, тоже попал в Р'? Мы хотим собрать весь свет снова в одной точке, которую называют фокусом. Как это сделать? Поскольку свет всегда выбирает путь с наименьшим временем, то наверняка он не пойдет по другим предложенным нами путям. Единственный способ сделать целый ряд близлежащих траекторий приемлемыми для света — это устроить так, чтобы для всех время прохождения было точно одинаковым! В противном случае свет пойдет по траектории, требующей минимального времени. Поэтому задача построения фокусирующей системы сводится просто к созданию устройства, в котором свет тратит на всех путях одинаковое время!
Такое устройство создать просто. Возьмем кусок стекла, в котором свет движется медленнее, чем в воздухе (фиг. 26.10). Проследим путь луча света, проходящего в воздухе по линии PQP'. Этот путь длиннее, чем прямо из Р в Р', и наверняка занимает больше времени. Но если взять кусок стекла нужной толщины (позже мы вычислим, какой именно), то путь в нем скомпенсирует добавочное время, затрачиваемое при отклонении луча на траектории PQP'. При этих условиях можно устроить так, чтобы время, затрачиваемое светом на пути по прямой, совпадало со временем, затрачиваемым на пути PQP'. Точно так же, если взять частично отклоненный луч PRR'P' (более короткий, чем PQP'), то придется скомпенсировать уже не так много времени, как для прямолинейной траектории, но некоторую долю времени все же скомпенсировать придется.
Фиг. 26.8. Мираж.
Фиг, 26.9. Оптический «черный ящик».
В результате мы приходим к форме куска стекла, изображенной на фиг. 26.10. При такой форме весь свет из точки Р попадет в Р'. Всё это нам известно уже давно, и называется такое устройство собирательной линзой. В следующей главе мы вычислим, какой должна быть форма линзы, чтобы получить идеальную фокусировку.
Наконец, последний пример. Предположим, что нам нужно так поставить зеркало, чтобы свет из точки Р всегда приходил в Р' (фиг. 26.11). На любом пути свет должен отразиться от зеркала, и время для всех путей должно быть одинаковым. В данном случае свет проходит только в воздухе, так что время прохождения пропорционально длине пути. Поэтому требование равенства времен сводится к требованию равенства полных длин путей. Следовательно, сумма расстояний r1и r2 должна оставаться постоянной. Эллипс обладает как раз тем свойством, что сумма расстояний любой точки на его кривой от двух заданных точек постоянна; поэтому свет, отразившись от зеркала, имеющего такую форму, наверняка попадет из одного фокуса в другой.
Этот принцип фокусировки служит для наблюдения света звезд. При постройке большого 200-дюймового телескопа в обсерватории Паломар использовалась следующая идея. Вообразите себе звезду, удаленную от нас на миллиарды километров; мы хотим собрать весь испускаемый ею свет в фокус. Конечно, мы не можем начертить всю траекторию лучей до звезды, тем не менее мы должны проверить, насколько времена на различных траекториях равны. Мы, конечно, знаем, что если множество различных лучей достигло плоскости КК', перпендикулярной направлению лучей, то времена для всех этих лучей будут равны (фиг. 26.12). Далее лучи должны отразиться от зеркала и за равные промежутки времени попасть в фокус Р'.
Фиг. 26 10. Фокусирующая оптическая система.
Фиг. 26.11. Эллиптическое зеркало.
Это означает, что мы должны найти такую кривую, для которой сумма расстояний ХХ'--Х'Р' будет постоянна, независимо от выбора точки X. Легче всего это сделать, продолжив отрезок XX' до плоскости LL'. Потребуем теперь, чтобы выполнялись соотношения А'А"=А'Р',В'В"=В'Р', С'С"=С'Р' и т. д.; в этом случае мы получаем нужную нам кривую, потому что сумма длин А 'А+А 'Р' =АА'+А 'А'' будет постоянной для всех точек кривой. Значит, наша кривая есть геометрическое место всех точек, равноудаленных от линии и некоторой заданной точки. Такая кривая называется параболой; вот зеркало телескопа и было изготовлено именно в форме параболы.