Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
N(t)=N0e-t/t. (43.7)
Если мы хотим определить вероятность P(t) того, что молекула не испытает столкновений, нужно величину N(t) поделить на N0; тогда получим
P(t)=е-t/t. (43.8)
Вот наш результат: вероятность того, что какая-то молекула сможет прожить время t, не столкнувшись, равна ехр(-t/t), где t — среднее время между столкновениями. Вероятность эта начинается с 1 (очевидности) при t=0 и уменьшается по мере того, как t становится все больше и больше. Вероятность того, что молекула избежит столкновений за время t, равна е-1=0,37... Шансов выдержать дольше, чем среднее время между столкновениями, меньше половины. В этом нет ничего странного, потому что существует достаточно много молекул, которые избегают столкновений значительно дольше среднего времени между столкновениями, так что среднее время между столкновениями по-прежнему равно t,
Первоначально мы определили t как среднее время между столкновениями. Сформулированный в виде уравнения (43.7) результат говорит нам, что среднее время, отсчитываемое от произвольно взятого момента до следующего столкновения, также равно т. Этот несколько удивительный факт можно продемонстрировать следующим образом. Число молекул, которые испытают их следующее столкновение в промежутке dt, отсчитанного от времени t после произвольно взятого начального времени, равно N(t)dt/t. Их «промежуток времени до следующего столкновения» равен, конечно, t. «Среднее время до следующего столкновения» получается обычным образом:
Среднее время до следующего столкновения=
Используя полученное из (43.7) число N(t) и вычисляя интеграл, найдем, что t — это среднее время, отсчитанное от любого момента до следующего столкновения.
§ 2. Средняя длина свободного пробега
Есть еще возможность описать столкновения молекул, не вводя для этого времени между столкновениями. Можно определить, далеко ли успеет уйти частица между столкновениями. Если мы знаем, что среднее время между столкновениями равно t, а средняя скорость молекул равна v, то очевидно, что среднее расстояние между столкновениями, которое мы обозначим буквой l, равно произведению t и v;. Это расстояние между столкновениями обычно называют длиной свободного пробега:
Длина свободного пробега l=tv. (43.9)
В этой главе мы не будем уточнять, какого рода среднее мы имеем в виду в каждом случае. Существующие разные средние — среднее, корень из среднего квадрата и т. д.— приблизительно равны и отличаются только множителями, близкими к единице. Поскольку для получения правильных множителей необходим подробный анализ, нам нет смысла очень уж стараться уточнять, какое именно среднее используется в том или ином случае. Мы хотим еще предупредить читателей, что используемые для обозначения физических величин алгебраические символы (например, l для длины свободного пробега) не являются общепринятыми просто потому, что об этом никто еще специально не договаривался.
Вероятность того, что молекула испытает столкновение, пройдя расстояние dx, равна dx/l, как вероятность столкновения за короткий промежуток времени dt равна dt/t. Призвав на помощь те же аргументы, что и раньше, читатель сможет показать, что вероятность того, что молекула пройдет по крайней мере расстояние х, прежде чем испытает следующее столкновение, равна е-х/l.
Среднее расстояние, которое молекула проходит между столкновениями (длина свободного пробега l), зависит от количества молекул, ее окружающих, и от того, какого «размера» эти молекулы, т. е. от того, насколько уязвимую мишень представляют они собой. «Размеры» мишени при столкновениях обычно описывают при помощи «эффективного сечения столкновений»; эта же идея используется и в ядерной физике или в задачах о рассеянии света.
Рассмотрим движущуюся частицу, которая проходит расстояние dx внутри газа, содержащего n0рассеивателей (молекул) в единичном объеме (фиг. 43.1).
Фиг. 43,1. Эффективное сечение столкновения.
На каждой площадке единичной площади, перпендикулярной к направлению движения выбранной нами частицы, имеется n0dx молекул. Если каждая может быть представлена эффективной площадью столкновения, или, как обычно говорят, «эффективным сечением столкновения» sс, то полная площадь, покрываемая рассеивателями, равна scn0dx.
Под «эффективным сечением столкновения» понимается площадь, в которую должен попасть центр частицы, если она должна столкнуться с заданной молекулой. Если молекулы выглядят как маленькие шарики (классическая картина), то следует ожидать, что sс=p(r1+r2)2, где r1и r2— радиусы двух сталкивающихся молекул. Вероятность того, что наша частица столкнется с какой-нибудь молекулой, равна отношению площади, покрываемой рассеивающими молекулами, к полной площади, принятой нами за единицу. Таким образом, вероятность столкновения на пути dx равна sсn0dx:
Вероятность столкновения на пути dx =sn0 dx. (43.10)
Мы уже отметили раньше, что вероятность столкновения на пути dx может быть записана в терминах длины свободного пробега l как dx/l. Сравнивая это с (43.10), можно связать длину свободного пробега с эффективным сечением столкновения:
1/l= scn0. (43.11)
Это равенство легче запомнить, если записать его так:
sсn0l = 1. (43.12)
Эта формула говорит, что если частица проходит путь I внутрь рассеивателя, в котором молекулы могут как раз покрыть всю площадь, то в среднем происходит одно столкновение. В цилиндре высотой l, поставленном на основание единичной площади, содержится n0l рассеивателей; если каждый из них занимает площадь sс, то полная площадь, покрытая ими, равна n0lsc, а это как раз единичая площадь. Конечно, молекулы не покрывают всей площади целиком, потому что часть молекул прячется за соседние молекулы. Поэтому некоторые молекулы пройдут между столкновениями большее, чем l, расстояние. Ведь это только в среднем молекулам между столкновениями дается ровно столько времени, чтобы они смогли пройти расстояние l. Измеряя длину свободного пробега l, можно определить эффективное сечение рассеяния scи сравнить этот результат с расчетами, основанными на детальной теории строения атомов. Но это уже совсем другая тема! А пока вернемся к проблеме неравновесных состояний.
§ 3. Скорость дрейфа
Мы хотим описать поведение одной или нескольких молекул, которые чем-то отличаются от огромного большинства остальных молекул газа. Будем называть «большинство» молекул молекулами «фона», а отличающиеся от них молекулы получат название «особых» молекул, или (для краткости) S-молекул. Молекула может быть особой по целому ряду причин: она может быть, скажем, тяжелее молекул фона. Может она отличаться от них также химическим составом. А, может быть, особые молекулы несут электрический заряд — тогда это будет ион на фоне нейтральных молекул. Из-за необычности масс или зарядов на S-молекулы действуют силы, отличающиеся от сил между молекулами фона. Изучая поведение S-молекул, можно понять основные эффекты, которые вступают в игру во многих разнообразных явлениях. Перечислим некоторые из них: диффузия газов, электрический ток в батарее, осаждение, разделение при помощи центрифуги и т. д.