Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Фейнмановские лекции по физике. 2. Пространство. Время. Движение читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Итак, мы представляем момент силы в виде вектора. Согласно правилу, с каждой плоскостью, в которой он действует, мы связываем прямую, перпендикулярную к этой плоскости. Однако перпендикулярность к плоскости оставляет неопределенный знак вектора. Чтобы определить его, необходимо еще одно дополнительное правило, которое говорило бы нам, что если момент силы действует определенным образом в плоскости ху, то соответствующий ему вектор направлен «вверх» по оси z. Это означает, что предварительно кто-то должен сказать нам, где «право», а где «лево». Предположим, что система координат xyz правосторонняя; тогда правило должно быть таким: если представить себе кручение как ввертывание болта с правовинтовой резьбой, то направление вектора, связанного с этим кручением, определяется поступательным движением болта.
Почему же момент можно отождествить с вектором? А это счастливая случайность: с каждой плоскостью можно связать только одну ось и, следовательно, с моментом можно связать только один вектор. Это свойство — особенность трехмерного пространства. В двумерном пространстве, например, момент — самый обычный скаляр, не нуждающийся в направлении. В трехмерном пространстве он — вектор. Если бы у нас было четыре измерения, то возникло бы большое затруднение, ибо (если, например, в качестве четвертого измерения взять время) дополнительно к трем плоскостям xy, yz и zx появятся также плоскости tx, ty и tz. Всего, следовательно, получается шесть плоскостей, а представить шесть величин в виде одного четырехмерного вектора невозможно.
Однако нам еще долго предстоит оставаться в трехмерном пространстве, поэтому стоит отметить, что в предыдущих математических рассмотрениях совершенно не существенно то, что х — координата, a F — сила, а существен только закон преобразования векторов. Поэтому не будет никакой разницы, если мы вместо координаты х подставим x-компоненту любого другого вектора. Иначе говоря, если мы хотим вычислить величину axby-aybx, где а и b — векторы, и назвать ее z-компонентой некоторой новой величины cz, то эта величина будет вектором с. Было бы хорошо для такой связи трех компонент нового вектора с с векторами а и b придумать какое-то математическое обозначение. Для такой связи пользуются обозначением: c=aXb. Таким образом, в дополнение к обычному скалярному произведению в векторном анализе мы получили произведение нового сорта, так называемое векторное произведение. Итак, запись c=aXb это то же самое, что
cx=aybz-агbу,
cy=azbx-axbz, (20,9)
сг=ахbу -ауbх.
Если переменить порядок векторов а и b, т. е. вместо aXb взять bXa, то знак вектора с при этом изменится, ибо czравно bхау-bуах. Векторное произведение поэтому не похоже на обычное умножение, для которого аb=bа. Для векторного произведения bXa=-aXb. Отсюда немедленно следует, что если а=b, то векторное произведение равно нулю, т. е. аXа=0.
Векторное произведение очень хорошо передает свойство вращения, поэтому важно понимать геометрическую связь векторов а, b и с. Связь между компонентами определяется уравнениями (20.9), исходя из которых можно получить следующие геометрические соотношения. Во-первых, вектор с перпендикулярен как к вектору а, так и к вектору b. (Попробуйте вычислить сXа и вы увидите, что в результате получится нуль.) Во-вторых, величина вектора с оказывается равной произведению абсолютных величин векторов b и а, умноженному на синус угла между ними. А куда направлен вектор с? Вообразите, что мы доворачиваем вектор а до вектора b в направлении угла, меньшего 180°; если крутить в ту же сторону болт с право-винтовой резьбой, то он должен двигаться в направлении вектора с. То, что мы берем правовинтовой болт, а не левовинтовой,— простая договоренность, которая постоянно напоминает нам, что в отличие от настоящих, «честных» векторов а и b вектор нового типа аXb по своему характеру слегка отличается от них, ибо строится он искусственно, по особому рецепту. У обычных векторов а и b, кроме того, есть специальное название: мы называем их полярными векторами. Примерами таких векторов служат координата r, сила F, импульс р, скорость v, электрическое поле Е и т. д. Все это обычные полярные векторы. Векторы же, содержащие одно векторное произведение обычных векторов, называются аксиальными векторами, или псевдовекторами. Примерами псевдовекторов, несомненно, могут служить момент силы t и момент импульса L. Кроме того, оказывается, что угловая скорость w, как и магнитное поле В, тоже псевдовектор.
Чтобы расширить наши сведения о математических свойствах векторов, нужно знать все правила их умножения, как векторного, так и скалярного. В настоящий момент нам нужны лишь очень немногие из них, однако в целях полноты мы выпишем все правила с участием векторного произведения. Впоследствии мы будем ими пользоваться. Эти правила таковы:
а) aX (b+c)=aXb+aXc,
б) (aa)Xb=a (aXb),
в) a· (bXc)=(aXb)·c, (20.10)
г) aX (bXc)=b(a·c)—c(a·b),
д) аXа=0,
е) а·(aXb)=0.
§ 2. Уравнения вращения в векторном виде
Возникает вопрос: можно ли с помощью векторного произведения записать какое-нибудь уравнение физики? Да, конечно, с его помощью записываются очень многие уравнения. Сразу же видно, например, что момент силы равен векторному произведению радиус-вектора на силу
t=rXF. (20.11)
Это просто краткая запись трех уравнений: тx=yFz-zFyи т. д. С помощью того же символа можно представить момент количества движения одной частицы в виде векторного произведения вектора расстояния от начала координат (радиус-вектора) на вектор импульса
L=rXp. (20.12)
Векторная форма динамического закона вращения в трехмерном пространстве напоминает уравнение Ньютона F=dp/dt; именно вектор момента силы равен скорости изменения со временем вектора момента количества движения
t=dL/dt. (20.13)
Если мы сложим (20.13) для многих частиц, то получим, что внешний момент сил, действующий на систему, равен скорости изменения полного момента количества движения
Еще одна теорема: если полный момент внешних сил равен нулю, то вектор полного момента количества движения системы остается постоянным. Эта теорема называется законом сохранения момента количества движения. Если на данную систему не действуют никакие моменты сил, то ее момент количества движения не изменяется.
А что можно сказать об угловой скорости? Вектор ли она? Мы уже рассматривали вращение твердого тела вокруг некоторой фиксированной оси, а теперь давайте на минуту предположим, что оно одновременно вращается вокруг двух осей. Тело может находиться, например, в коробке и вращаться там вокруг некоторой оси, а сама коробка в свою очередь вращается вокруг какой-то другой оси. Результатом же такого сложного движения будет вращение тела вокруг некоторой новой оси. Самое удивительное здесь то, что эта новая ось может быть найдена следующим образом. Если вращение в плоскости ху представить как вектор, направленный вдоль оси z, длина которого равна скорости вращения, а в виде другого вектора, направленного вдоль оси y, изобразить скорость вращения в плоскости, то, сложив их по правилу параллелограмма, получим результат, величина которого говорит о скорости вращения тела, а направление определяет плоскость вращения. Попросту говоря, угловая скорость в самом деле есть вектор, для которого скорость вращения в трех плоскостях представляет прямоугольные проекции на эти плоскости.