Фейнмановские лекции по физике. 8. Квантовая механика I

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 8. Квантовая механика I, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 8. Квантовая механика I
Название: Фейнмановские лекции по физике. 8. Квантовая механика I
Дата добавления: 15 январь 2020
Количество просмотров: 369
Читать онлайн

Фейнмановские лекции по физике. 8. Квантовая механика I читать книгу онлайн

Фейнмановские лекции по физике. 8. Квантовая механика I - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 6 7 8 9 10 11 12 13 14 ... 37 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 8. Квантовая механика I - _67.jpg

Сопоставляя это с (2.30), имеем

Фейнмановские лекции по физике. 8. Квантовая механика I - _68.jpg

Отсюда найдем

Фейнмановские лекции по физике. 8. Квантовая механика I - _69.jpg

Это и есть среднее число фотонов в любом состоянии с частотой w при тепловом равновесии в полости. Поскольку энергия каждого фотона hw, то энергия фотонов в данном состоянии

есть nhw, или

Фейнмановские лекции по физике. 8. Квантовая механика I - _70.jpg

Кстати говоря, мы уже получали подобное выражение в другой связи [см. гл. 41 (вып. 4), формула (41.15)]. Вспомните, что для гармонического осциллятора (скажем, грузика на пружинке) квантовомеханические уровни энергии находятся друг от друга на равных расстояниях hw, как показано на фиг. 2.7.

Фейнмановские лекции по физике. 8. Квантовая механика I - _71.jpg

Фиг. 2.7. Уровни энергии гармонического осциллятора.

 

Обозначив энергию n-го уровня через nhw. мы получили, что средняя энергия такого осциллятора также давалась выражением (2.33). А сейчас это выражение было выведено для фо­тонов путем подсчета их числа и привело к тому же результату. Перед вами — одно из чудес квантовой механики. Если начать с рассмотрения таких состояний или таких условий для бозе-частиц, когда они друг с другом не взаимодействуют (мы ведь предположили, что фотоны не взаимодействуют друг с другом), а за­тем считать, что в эти состояния могут быть помещены нуль, или одна, или две и т. д. до n частиц, то оказывается, что эта система ведет себя во всех квантовомеханических отношениях в точности, как гармонический осциллятор. Таким осциллято­ром считается динамическая система наподобие грузика на пружинке или стоячей волны в резонансной полости. Вот по­чему можно представлять электромагнитное поле фотонными частицами. С одной точки зрения можно анализировать электро­магнитное поле в ящике или полости в терминах множества гармонических осцилляторов, рассматривая каждый тип коле­баний, согласно квантовой механике, как гармонический ос­циллятор. С другой, отличной точки зрения ту же физику можно анализировать в терминах тождественных бозе-частиц. И итоги обоих способов рассуждений всегда точно совпадают. Невоз­можно установить, следует ли на самом деле электромагнитное поле описывать в виде квантуемого гармонического осциллято­ра или же задавать количество фотонов в каждом состоянии. Оба взгляда на вещи оказываются математически тождествен­ными. В будущем мы сможем с равным правом говорить либо о числе фотонов в некотором состоянии в ящике, либо о номере уровня энергии, связанного с некоторым типом колебаний электромагнитного поля. Это два способа говорить об одном и том же. То же относится и к фотонам в пустом пространстве. Они эквивалентны колебаниям полости, стенки которой отошли на бесконечность.

Мы подсчитали среднюю энергию произвольного частного типа колебаний в ящике при температуре T; чтобы получить закон излучения абсолютно черного тела, остается узнать толь­ко одно: сколько типов колебаний бывает при каждой энергии. (Мы предполагаем, что для каждого типа колебаний найдутся такие атомы в ящике — или в его стенках,— у которых есть Уровни энергии, способные приводить к излучению этого типа колебаний, так что каждый тип может прийти в тепловое равно­весие.) Закон излучения абсолютно черного тела обычно форму­лируют, указывая, сколько энергии в единице объема уносится светом в малом интервале частот от со до w+Dw. Так что нам нужно знать, сколько типов колебаний с частотой в интервале Dw имеется в ящике. Хотя вопрос этот то и дело возни­кает в квантовой механике, это все же чисто классический во­прос, касающийся стоячих волн.

Ответ мы получим только для прямоугольного ящика. Для произвольного ящика выходит то же, только выкладки куда сложней. Нас еще будет интересовать ящик, размеры которого намного больше длины световых волн. В этом случае типов колебаний будет мириады и мириады; в каждом малом интер­вале частот Dw их окажется очень много, так что можно будет говорить об их «среднем числе» в каждом интервале Dw при частоте to. Начнем с того, что спросим себя, сколько типов колебаний бывает в одномерном случае — у волн в натянутой струне. Вы знаете, что каждый тип колебаний — это синусоида, кривая, обращающаяся на обоих концах в нуль; иначе говоря, на всей длине линии (фиг. 2.8) должно укладываться целое число полуволн.

Фейнмановские лекции по физике. 8. Квантовая механика I - _72.jpg

Фиг. 2.8. Типы стоячих волн на отрезке.

Мы предпочитаем пользоваться волновым числом k=2p/l; обозначая волновое число j-го типа колебаний через kj, получаем

Фейнмановские лекции по физике. 8. Квантовая механика I - _73.jpg

где j — целое. Промежуток dk между последовательными ти­пами равен

Фейнмановские лекции по физике. 8. Квантовая механика I - _74.jpg

Нам удобно выбрать столь большое kL, что в малом интервале Dk; оказывается множество типов колебаний.

Обозначив число типов колебаний в интервале Dk через

Фейнмановские лекции по физике. 8. Квантовая механика I - _75.jpg
, имеем

Фейнмановские лекции по физике. 8. Квантовая механика I - _76.jpg

Физики-теоретики, занимающиеся квантовой механикой, обычно предпочитают говорить, что типов колебаний вдвое меньше; они пишут

Фейнмановские лекции по физике. 8. Квантовая механика I - _77.jpg

И вот почему. Им обычно больше нравится мыслить на языке бегущих волн — идущих направо (с k положительными) и идущих налево (с k отрицательными). Но «тип колебаний», или «собственное колебание»,— это стоячая волна, т. е. сумма двух волн, бегущих каждая в своем направлении. Иными словами, они считают, что каждая стоячая волна включает два различ­ных фотонных «состояния». Поэтому если предпочесть под

Фейнмановские лекции по физике. 8. Квантовая механика I - _78.jpg
подразумевать число фотонных состояний с данным k (где теперь уже k может быть и положительным, и отрицательным), то тогда
Фейнмановские лекции по физике. 8. Квантовая механика I - _79.jpg
окажется вдвое меньше. (Все интегралы теперь нужно будет брать от k=-Ґ до k =+Ґ, и общее число состояний вплоть до любого заданного абсолютного значения k получится таким, как надо.) Конечно, стоячие волны мы тогда не сможем хорошо описывать, но подсчет типов колебаний бу­дет идти согласованно.

Теперь наши результаты мы обобщим на три измерения. Стоячая волна в прямоугольном ящике должна обладать целым числом полуволн вдоль каждой оси. Случай двух измерений дан на фиг. 2.9.

Фейнмановские лекции по физике. 8. Квантовая механика I - _80.jpg

Фиг. 2.9. Типы стоячих волн в двух измерениях.

Каждое направление и частота волны описываются вектором волнового числа k. Его х-, у- и z-компоненты должны удовлетворять уравнениям типа (2.34). Стало быть, мы имеем

Фейнмановские лекции по физике. 8. Квантовая механика I - _81.jpg

Число типов колебаний с kxв интервале Dkx, как и прежде, равно

Фейнмановские лекции по физике. 8. Квантовая механика I - _82.jpg

то же и с Dky, и с Dkz. Если обозначить через

Фейнмановские лекции по физике. 8. Квантовая механика I - _83.jpg
(k) число таких типов колебаний, в которых векторное волновое число k обладает х-компонентой в интервале от kxдо kx+Dkx, у-компонентой в интервале от kyдо ky+Dky и z-компонентой в интервале от kzдо. kz +Dkz, то

1 ... 6 7 8 9 10 11 12 13 14 ... 37 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название