Большая Советская Энциклопедия (ЭЙ)
Большая Советская Энциклопедия (ЭЙ) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Эйлера-Маклорена формула
Э'йлера—Макло'рена фо'рмула, формула суммирования, связывающая частные суммы ряда с интегралом и производными его общего члена:
где Bv —Бернулли числа , Rn — остаточный член. Э.—М. ф. применяется для приближённого вычисления определённых интегралов, для исследования сходимости рядов, для вычисления сумм и для разложения функций в ряд Тейлора. Например, при m = 1, р = 0, n = 2m + 1,
Э. — М. ф. даёт следующее выражение:
.Э.—М. ф. была впервые приведена Л. Эйлером в 1738. Независимо формула была открыта позднее К. Маклореном (1742).
Эйлера-Фурье формулы
Э'йлера—Фурье' фо'рмулы, формулы для вычисления коэффициентов разложения функции в тригонометрический ряд (ряд Фурье). Э.—Ф. ф. названы по имени Л. Эйлера , давшего (1777) первый их вывод, и Ж. Фурье , систематически (начиная с 1811) пользовавшегося тригонометрическими рядами при изучении задач теплопроводности. См. Фурье коэффициенты ,Тригонометрический ряд .
Эйлерова характеристика
Э'йлерова характери'стика многогранника, число ao —a1 +a2 , где ao — число вершин, a1 — число рёбер и a2 — число граней многогранника. Если многогранник выпуклый или гомеоморфен (см. Гомеоморфизм ) выпуклому, то его Э. х. равна двум (теорема Л. Эйлера, 1758, известная ещё Р. Декарту).
Э. х. произвольного комплекса есть число
, где n — размерность комплекса, ao — число его вершин, a1 — число его рёбер, вообще ak есть число входящих в комплекс k -мерных симплексов. Оказывается, что Э. х. равна (формула Эйлера—Пуанкаре), где pk есть k -мерное число Бетти данного комплекса (см. Топология ). Отсюда следует топологическая инвариантность Э. х. Ввиду топологической инвариантности Э. х. говорят об Э. х. поверхности, а также полиэдра, подразумевая под этим Э. х. любой триангуляции этой поверхности (этого полиэдра).Лит.: Александров П. С., Комбинаторная топология, М.— Л., 1947; Понтрягин Л. С., Основы комбинаторной топологии. 2 изд., М., 1976.
Эйлеровы интегралы
Э'йлеровы интегра'лы, интегралы вида
(1)(Э. и. первого рода, или бета-функция, изученная Л. Эйлером в 1730—31, ранее рассматривалась И. Ньютоном и Дж. Валлисом ) и
(2)[Э. и. второго рода, или гамма-функция , рассмотренная Л. Эйлером в 1729—30 в форме, эквивалентной формуле (2); сама формула (2) встречается у Эйлера в 1781]; название «Э. и.» дано А. Лежандром . Э. и. позволяют обобщить на случай непрерывно изменяющихся аргументов биномиальные коэффициенты
и факториал n !, ибо, если а и b — натуральные числа, то, Г (а +1) = а !Интегралы (1) и (2) абсолютно сходятся, если а и b положительны, и перестают существовать, если а и b отрицательны. Имеют место соотношения
В (a , b ) = B (b , a ),
;последнее сводит бета-функцию к гамма-функции. Существует ряд соотношений между Э. и. при различных значениях аргумента, обобщающих соответствующие соотношения между биномиальными коэффициентами. Э. и. можно рассматривать и при комплексных значениях аргументов а и b . Э. и. встречаются во многих вопросах теории специальных функций , к ним сводятся многие определённые интегралы, не выражаемые элементарно. Э. и. называется также интеграл
выражающий т. н.гипергеометрическую функцию .
Лит.: Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969; Артин Е., Введение в теорию гамма-функций, пер. с нем., М.— Л., 1934; Уиттекер Е. Т., Ватсон Д. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963.
Эйлеровы углы
Э'йлеровы углы', углы j, q, y определяющие положение прямоугольной декартовой системы координат OXYZ относительно другой прямоугольной декартовой системы координат Oxyz с той же ориентацией (см. рис. ). Пусть OK — ось (линия узлов), совпадающая с линией пересечения координатной плоскости Оху первой системы с координатной плоскостью ОХУ второй системы и направленная так, что оси Oz , OZ , OK образуют тройку той же ориентации. Тогда Э. у. будут: j — угол собственного вращения — угол между осями Ox и OK , отсчитываемый в плоскости Оху от оси Ox в направлении кратчайшего поворота от Ox к Оу , q — угол нутации, не превосходящий p — угол между осями Oz и OZ ; y — угол прецессии — угол между осями OK и OX , отсчитываемый в плоскости ОХУ от оси OK в направлении кратчайшего поворота от OX к ОУ . При q = 0 или p Э. у. не определяются. Введены Л. Эйлером в 1748. Широко используются в динамике твёрдого тела (например, в теории гироскопа ) и небесной механике.
Рис. к ст. Эйлеровы углы.
Эйлер-Хельпин Ханс Карл Август Симон фон
Э'йлер-Хе'льпин (Euler-Chelpin) Ханс Карл Август Симон фон (15.2.1873, Аугсбург, Германия, — 6.11.1964, Стокгольм), шведский биохимик, член Королевской шведской АН. Потомок Л. Эйлера . Отец У. Эйлера . Окончил мюнхенскую АХ (1893), затем изучал химию и медицину в университетах Берлина, Страсбура и Гёттингена. Организатор и председатель (1908—63) Шведского химического общества. Профессор Стокгольмского университета (1906—29), директор Института органической химии и института витаминов (с 1929). Основные работы посвящены изучению механизма различных биохимических процессов. Исследовал кинетику и выяснил механизм ферментации сахаров. Отметил увеличение скорости химических реакций в живых организмах под действием ферментов и предложил назвать это явление биокатализом . Изучал структуру и механизм действия витамина А (совместно с П. Каррером ) и доказал, что b-каротин является провитамином А и содержится в пигменте глаза. Внёс значительный вклад в изучение биохимии опухолей. Нобелевская премия (1929, совместно с А. Гарденом ). Э.-Х. — иностранный член АН СССР (1927).
Соч.: Grundlagen und Ergebnisse der Pflanzenchemie, Tl 1—3, Braunschweig, 1908—09; Chemie der Enzyme, 3 Aufl., Tl 1—2, Münch., 1925¾34.