Большая Советская Энциклопедия (ЭЙ)
Большая Советская Энциклопедия (ЭЙ) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Соч. в рус. пер.: Не меркнет свет, Петрозаводск, 1944; Под северным сиянием, предисл. О. Куусинена, М., 1955; Стихи, в сборнике: Поэзия Финляндии, М., 1962; Стихотворения, М.—Л., 1963.
Лит.: Ärmas äikiä on kuollut, «Kansan Uutiset», 1965, 21 marraskuu.
Эйкман Христиан
Э'йкман (Eijkman) Христиан (11.8.1858, Нейкерк, Гелдерланд, — 5.11.1930, Утрехт), нидерландский бактериолог и врач. Окончил Амстердамский университет (доктор медицины, 1883), стажировался у Р. Коха в Берлине. С 1886 военный врач в Индонезии, с 1888 директор Батавской лаборатории патологии (Джакарта), в 1898—1928 профессор гигиены Утрехтского университета (Нидерланды). Основные труды по витаминологии. Открыл факт витаминной недостаточности как источника ряда заболеваний. Нобелевская премия (1929, совместно с Ф. Хопкинсом ).
Эйконал
Эйкона'л (от греч. eikon — изображение) (в геометрической оптике), функция, определяющая оптическую длину пути луча света между двумя произвольными точками, одна из которых А принадлежит пространству предметов (объектов), другая A' — пространству изображений (см. Изображение оптическое ). В зависимости от выбора параметров различают: точечный Э., или эйконал У. Р. Гамильтона (гамильтонова характеристическая функция от координат х , у , z ; x' , y' , z' точек А и A' ); угловой эйконал Г. Э. Брунса (функция угловых коэффициентов µ, v ; µ' , v' луча); более сложный эйконал К. Шварцшильда и ряд др. Применение Э. при расчётах оптических систем даёт возможность, дифференцируя его по определённым параметрам, найти выражения для некоторых основных (т. н. поперечных) аберраций оптических систем . Функции, называемые Э., широко используются в электронной и ионной оптике в рамках общей аналогии, существующей между нею и классической оптикой, а также при описании процессов рассеяния частиц и волн (метод эйконала, эйкональное приближение в квантовой механике и квантовой теории поля), где тоже возникают аналогии с оптикой.
Лит.: Борн М., Вольф Э., Основы оптики, пер. с англ., М., 1973; Кельман В. М., Явор С. Я., Электронная оптика, 3 изд., Л., 1968; Гольдбергер М., Ватсон К., Теория столкновений, пер. с англ., М., 1967.
Эйкумена
Эйкуме'на, экумена, населённая человеком часть земли, ойкумена . Об истории заселения см. в ст. Земля .
Эйлат
Эйла'т, город в Израиле. 13 тыс. жит. (1972). Порт на берегу Красного м. Шоссе соединён с Тель-Авивом. Промышленность: алмазообрабатывающая, ювелирная, цементная, пищевая (главным образом рыбная и виноделие). Вблизи Э. — месторождение меди (Тимна) и самоцветов. От Э. отходят нефтепроводы в Хайфу и через Ашкелон. Рыболовство.
Эйленбург
Э'йленбург (Eilenburg), город в ГДР, в округе Лейпциг, на р. Мульда. Ж.-д. узел. 22,2 тыс. жит. (1975). Производство целлулоида, строит. машин, мебели, кондитерских изделий.
Эйлер Леонард
Э'йлер (Euler) Леонард [4(15).4.1707, Базель, Швейцария, — 7(18).9.1783, Петербург], математик, механик и физик. Род. в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца (который в молодости занимался математикой под рук. Я. Бернулли), а в 1720—24 в Базельском университете, где слушал лекции по математике И. Бернулли .
В кон. 1726 Э. был приглашен в Петербургскую АН и в мае 1727 приехал в Петербург. В только что организованной академии Э. нашёл благоприятные условия для научной деятельности, что позволило ему сразу же приступить к занятиям математикой и механикой. За 14 лет первого петербургского периода жизни Э. подготовил к печати около 80 трудов и опубликовал свыше 50. В Петербурге он изучил русский язык.
Э. участвовал во многих направлениях деятельности Петербургской АН. Он читал лекции студентам академического университета, участвовал в различных технических экспертизах, работал над составлением карт России, написал общедоступное «Руководство к арифметике» (нем. изд. 1738—40, рус. пер. ч. 1—2, 1740). По специальному поручению академии Э. подготовил к печати «Морскую науку» (ч. 1—2, 1749)— фундаментальный труд по теории кораблестроения и кораблевождения.
В 1741 Э. принял предложение прусского короля Фридриха II переехать в Берлин, где предстояла реорганизация АН. В Берлинской АН Э. занял пост директора класса математики и член правления, а после смерти её первого президента П. Л. Мопертюи несколько лет (с 1759) фактически руководил академией. За 25 лет жизни в Берлине он подготовил около 300 работ, среди них ряд больших монографий.
Живя в Берлине, Э. не переставал интенсивно работать для Петербургской АН, сохраняя звание её почётного члена. Он вёл обширную научную и научно-организационную переписку, в частности переписывался с М. В. Ломоносовым, которого высоко ценил. Э. редактировал математический отдел русского академического научного органа, где опубликовал за это время почти столько же статей, сколько в «Мемуарах» Берлинской АН. Он деятельно участвовал в подготовке русских математиков; в Берлин командировались для занятий под его руководством будущие академики С. К. Котельников, С. Я. Румовский и М. Софронов. Большую помощь Э. оказывал Петербургской АН, приобретая для неё научную литературу и оборудование, ведя переговоры с кандидатами на должности в академии и т.д.
17(28) июля 1766 Э. вместе с семьей вернулся в Петербург. Несмотря на преклонный возраст и постигшую его почти полную слепоту, он до конца жизни продуктивно работал. За 17 лет вторичного пребывания в Петербурге им было подготовлено около 400 работ, среди них несколько больших книг. Э. продолжал участвовать и в организационной работе академии. В 1776 он был одним из экспертов проекта одноарочного моста через Неву, предложенного И. П. Кулибиным , и из всей комиссии один оказал широкую поддержку проекту.
Заслуги Э. как крупнейшего учёного и организатора научных исследований получили высокую оценку ещё при его жизни. Помимо Петербургской и Берлинской академий, он состоял членом крупнейших научных учреждений: Парижской АН, Лондонского королевского общества и других.
Одна из отличительных сторон творчества Э. — его исключительная продуктивность. Только при жизни Э. было опубликовано около 550 его книг и статей (список трудов Э. содержит примерно 850 назв.). В 1909 Швейцарское естественнонаучное общество приступило к изданию полного собрания сочинений Э., которое завершено в 1975; оно состоит из 72 томов. Большой интерес представляет и колоссальная научная переписка Э. (около 3000 писем), до сих пор опубликована лишь частично.
Необыкновенно широк был круг занятий Э., охватывавших все отделы современной ему математики и механики, теорию упругости, математическую физику, оптику, теорию музыки, теорию машин, баллистику, морскую науку, страховое дело и т.д. Около 3 /5 работ Э. относится к математике, остальные 2 /5 преимущественно к её приложениям. Свои результаты и результаты, полученные другими, Э. систематизировал в ряде классических монографий, написанных с поразительной ясностью и снабженных ценными примерами. Таковы, например, «Механика, или Наука о движении, изложенная аналитически» (т. 1—2, 1736), «Введение в анализ» (т. 1—2, 1748), «Дифференциальное исчисление» (1755), «Теория движения твёрдого тела» (1765), «Универсальная арифметика» (т. 1—2, 1768—69), выдержавшая около 30 изданий на 6 языках, «Интегральное исчисление» (т. 1—3, 1768—70, т. 4, 1794) и др. В 18 в., а отчасти и в 19 в. огромную популярность приобрели общедоступные «Письма о разных физических и филозофических материях, писанные к некоторой немецкой принцессе...» (ч. 1—3, 1768—74), которые выдержали свыше 40 изданий на 10 языках. Большая часть содержания монографий Э. вошла затем в учебные руководства для высшей и частично средней школы. Невозможно перечислить все доныне употребляемые теоремы, методы и формулы Э., из которых только немногие фигурируют в литературе под его именем [см., например, Эйлера метод ломаных ,Эйлера подстановки ,Эйлера постоянная ,Эйлера уравнение ,Эйлера уравнения (в гидромеханике), Эйлера формулы ,Эйлера функция ,Эйлера числа в математике, Эйлера число ,Эйлера —Маклорена формула ,Эйлера — Фурье формулы ,Эйлерова характеристика ,Эйлеровы интегралы ,Эйлеровы углы ].