-->

Большая Советская Энциклопедия (РА)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (РА), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (РА)
Название: Большая Советская Энциклопедия (РА)
Дата добавления: 15 январь 2020
Количество просмотров: 81
Читать онлайн

Большая Советская Энциклопедия (РА) читать книгу онлайн

Большая Советская Энциклопедия (РА) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 79 80 81 82 83 84 85 86 87 ... 248 ВПЕРЕД
Перейти на страницу:

  Для радиолокационного наблюдения используют: эхо-сигналы, образующиеся в результате отражения радиоволн от объекта, облученного РЛС (т. н. Р. с зондирующим излучением); сигналы РЛС, переизлучаемые ретранслирующим устройством, находящимся на объекте, местоположение которого определяется (Р. с активным ответом); собственное радиоизлучение объекта — излучение радиоустройств, находящихся на объекте, или тепловое излучение самого объекта, определяющееся его температурой (пассивная радиолокация).

  В Р. измеряют расстояние до объекта (дальнометрия, или дистанциометрия), направление прихода сигналов (пеленгация), радиальную и угловую скорости движения объекта и т.д. Радиолокационное наблюдение объектов позволяет также выявлять их многие характерные особенности, например определять параметры ледового покрова водной поверхности, влагосодержание атмосферы, размеры и конфигурацию объекта и т.п. Данные измерений могут быть дискретными (вырабатываемыми через определённые интервалы времени) или непрерывными. Объекты могут быть одиночными или множественными либо представлять собой сплошные образования. Возможно сложное (комбинированное) наблюдение, например радиолокационный обзор пространства в некотором секторе, позволяющий производить поиск и обнаружение новых объектов в этом секторе и одновременно непрерывно получать текущие координаты уже обнаруженных объектов.

  В основе наиболее распространённого вида Р. — Р. с зондирующим излучением — лежит явление отражения радиоволн. Простейшей характеристикой отражающих свойств объекта (в направлении на приёмную антенну РЛС при заданном направлении поля зондирующего излучения) является т. н. эффективная площадь рассеяния (ЭПР) объекта s, позволяющая определить плотность потока мощности поля у приёмной антенны РЛС П2 через плотность потока мощности излучения у объекта H1 по формуле

П1s = П2×4pR2,

где R — расстояние от объекта до РЛС. По характеру отражения или излучения радиоволн радиолокационные объекты принято разделять прежде всего на сосредоточенные (под которыми понимают одиночные объекты с размерами, малыми по сравнению с размерами объёма, разрешаемого РЛС) и распределённые. Распределённые объекты, в свою очередь, могут быть поверхностными (например, земная поверхность с пашней, кустарником, снегом и т.д., поверхность моря или Луны и т.д.) и объёмными (например, всевозможные неоднородности в атмосфере — облака, дождь, снег, искусственные дипольные помехи и т.д.). Гладкие поверхности, у которых размеры неровностей составляют незначительную долю от длины облучающей волны (например, спокойная водная поверхность, бетонное полотно и т.д.), отражают зеркально, т. е. при отражении наблюдаются определённые фазовые соотношения между облучающей волной и отражённой. При неровностях, соизмеримых с длиной облучающей волны или больших её, имеет место диффузное отражение волн, т. е. сложение волн со случайными фазами, отражённых от разных элементов поверхности. В общем случае реальные поверхности создают отражённые волны, содержащие как зеркальную, так и диффузную компоненту. Сопоставляя размеры одиночного объекта не только с объёмом, разрешаемым РЛС, но и с длиной волны, излучаемой ею, различают 3 случая: размеры объекта во много раз больше длины волны (т. н. оптическое рассеяние — поверхностное и краевое), размеры объекта и длина волны близки друг к другу (резонансное рассеяние), длина волны намного превосходит размеры объекта (рэлеевское рассеяние) (см. также Отражение света,Рассеяние света). Эти случаи различаются не только по интенсивности отражения, но и по характеру зависимости отражённого сигнала от длины волны и поляризации зондирующего сигнала. Особый практический интерес представляет случай большой величины отношения размеров объекта к длине волны, поскольку в Р. наибольшее применение имеют волны сантиметрового (СМ) диапазона, в котором у большинства объектов (самолёты, корабли, ракеты, космические аппараты) размеры поверхностей и краев во много раз превосходят длину волны. Для такого (оптического) рассеяния характерны независимость ЭПР от поляризации зондирующего сигнала и возможность разделить большой объект на отдельные, практически самостоятельные части. Как и в оптике, здесь большую роль играют «блестящие точки» (явление интенсивного отражения волн от выпуклых частей объекта), а также зеркально отражающие гладкие участки поверхности. Расчёт поверхностного рассеяния волн основан на применении оптических методов (преимущественно на использовании принципа Гюйгенса — Кирхгофа, согласно которому отражённое поле находится суммированием полей отдельных участков «освещенной» поверхности). При резонансном рассеянии величина ЭПР резко зависит от длины волны и имеет максимум (это явление используют для создания эффективных помех работе РЛС посредством сбрасывания с самолётов металлизированных лент длиной, равной половине длины волны). В области рэлеевского рассеяния ЭПР объекта обратно пропорциональна четвёртой степени длины волны, прямо пропорциональна квадрату объёма объекта и не зависит от его формы. Такая зависимость объясняет выгоды применения в Р. сравнительно коротких волн (например, волн СМ диапазона) для обнаружения мелких объектов (например, снарядов, капель дождя и пр.).

  Появление и развитие радиолокации. Явление отражения радиоволн наблюдал ещё Г. Герц в 1886—89. Влияние корабля, пересекающего трассу радиоволн, на силу сигнала зарегистрировал А. С. Попов в 1897. Впервые идея обнаружения корабля по отражённым от него радиоволнам была четко сформулирована в авторской заявке немецкого инженера К. Хюльсмайера (1904), содержавшей также подробное описание устройства для её реализации.

  Интерференцию незатухающих радиоволн, приходящих к приёмнику по двум путям — от передатчика и, после отражения, от движущегося судна, — впервые наблюдали американский инженер А. Тейлор и Л. Юнг в 1922, а интерференцию при отражении радиоволн от самолёта — американский инженер Б. Тревор и П. Картер в 1932. В 1924 английский учёный Э. Эплтон провёл измерения высоты слоя Кеннелли — Хевисайда (слой Е ионосферы) путём наблюдения чередующихся усилений и ослаблений сигнала, вызванных варьированием частоты колебаний в передатчике, приводящим (как и при движении отражающего объекта) к изменению разности фаз между колебаниями, пришедшими по двум путям. В 1925 английские учёные Г. Брейт и М. Тьюв опубликовали результаты своей работы по определению высоты слоя Кеннелли — Хевисайда измерением времени запаздывания импульсного сигнала, отражённого от слоя, относительно сигнала, пришедшего вдоль поверхности Земли.

  В СССР работы по Р. были развёрнуты с 1933 по инициативе М. М. Лобанова, под руководством Ю. К. Коровина и П. К. Ощепкова. Первые практически использовавшиеся РЛС, действие которых было основано на появлении биений при пересечении самолётом линии передатчик — приёмник, разработаны под руководством Д. С. Стогова в 1938. Импульсный метод Р. разработан в 1937 в Ленинградском физико-техническом институте под руководством Ю. Б. Кобзарева.

  Последующее развитие Р., её внедрение в различные виды вооружения и народное хозяйство связаны с освоением диапазона СВЧ, совершенствованием методов Р., внедрением вычислительной техники и использованием достижений смежных наук. Особое значение имела разработка радиолокационных измерительных устройств для зенитной и корабельной артиллерии. Появление и применение (почти одновременно с Р.) противорадиолокационных средств — пассивных и активных помех, защитных покрытий и пр. (см. Радиоэлектронное противодействие), вызвали необходимость разработки специальных противопомеховых методов и устройств. Радиолокационными методами решаются разнообразные задачи народного хозяйства, связанные с навигацией (см. Навигация,Навигация воздушная), метеорологией (см. Радиолокация в метеорологии), аэрофотосъёмкой (см. Аэрометоды), разведкой полезных ископаемых и др.

1 ... 79 80 81 82 83 84 85 86 87 ... 248 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название