Большая Советская Энциклопедия (СЦ)
Большая Советская Энциклопедия (СЦ) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Марксистская философия отвергает обе эти формы абсолютизации социальной роли науки. Подчёркивая исключительную роль науки в общественной жизни, марксизм-ленинизм рассматривает её в связи с др. формами общественного сознания и показывает сложный, многосторонний характер этой связи. С этой точки зрения, наука выступает как необходимый продукт развития человеческой культуры и вместе с тем — как один из главных источников и стимуляторов истинного прогресса самой культуры, материальной и духовной. Отсюда глубокая взаимосвязь науки с мировоззрением, огромное влияние, которое оказывают общественные науки на весь ход общественного развития, на борьбу идей в современном мире. В марксистско-ленинской философии оценка социальной роли науки даётся в реальном контексте конкретных социальных систем, обусловливающих существенно разную, нередко противоположную роль научного знания в жизни общества. См. также Наука.
Лит.: Швырев В. С., Юдин Э. Г., О так называемом сциентпзме в философии, «Вопросы философии», 1969, № 8; их же, Мировоззренческая оценка науки: критика буржуазных концепций сциентизма и антисциентизма, М., 1973; Сноу Ч. П., Две культуры, пер. с англ., М., 1973; Человек — наука — техника, [М., 1973].
Э. Г. Юдин.
Сцилард Лео
Сци'лард (Szilard) Лео (1898—1964), американский физик; см. Силард Л.
Сцилла
Сци'лла, виды растений рода пролеска; название, часто употребляемое в цветоводстве.
Сцилла и Харибда
Сци'лла и Хари'бда, Скилла и Харибда, в древнегреческой мифологии два чудовища, обитавшие по обеим сторонам узкого морского пролива между Италией и Сицилией и губившие проплывавших мореплавателей. С., обладавшая шестью головами, хватала с проплывавших кораблей гребцов, а Х., всасывавшая в себя воду на огромном расстоянии, поглощала вместе с ней корабль. Отсюда выражение «находиться между С. и Х.» — подвергаться опасности с обеих сторон.
Сцинки
Сци'нки, сцинковые (Scincidae), семейство ящериц. Длина тела до 65 см. Хвост ломкий. На туловище под чешуями расположены костные пластинки (остеодермы). Около 700 видов, относящихся к 60 родам. Распространены преимущественно в тропической зоне Восточного полушария; особенно много видов в Австралийской зоогеографической подобласти. В СССР 10 видов из 4 родов: мабуи (1 вид), длинноногие С. (Eumeces, 3 вида), гологлазы (6, по др. данным, 5 видов), змееящерицы(1 вид). Большинство С. — наземные ящерицы; лишь некоторые живут на деревьях или частично в воде. У С., ведущих роющий образ жизни, тело обычно более удлинённое, конечности частично или полностью утрачены, глаза редуцированы. Питаются С. беспозвоночными, главным образом насекомыми, а крупные виды — и позвоночными; некоторые поедают и растительную пищу. Большинство С. откладывает яйца, ряд видов яйцеживородящи или живородящи.
Лит.: Жизнь животных, т. 4, ч. 2, М., 1969; Банников А. Г., Даревский И. С., Рустамов А. К., Земноводные и пресмыкающиеся СССР, М., 1971.
Сцинтилляторы
Сцинтилля'торы,люминофоры, в которых под действием ионизирующих излучений возникают световые вспышки — сцинтилляции. С. могут служить многие кристаллофосфоры (например, ZnS, NaI), органические кристаллы (например, антрацен, стильбен), растворы пластмасс, инертные газы. С. применяют в сцинтилляционных счётчиках; они должны быть прозрачны для собственного излучения.
Сцинтилляционный спектрометр
Сцинтилляцио'нный спектро'метр, прибор для измерения характеристик ядерных излучений и элементарных частиц (интенсивности излучения, энергии частиц, времени жизни нестабильных ядер и частиц), основным элементом которого является сцинтилляционный счётчик. Возможность измерения энергии С. с. связана с зависимостью интенсивности свечения (светового выхода) сцинтиллятора от энергии, потерянной в нём частицей. Для сильно ионизующих частиц (a-частиц, осколков деления ядер) и частиц малых энергий (e £ 1Мэв) наилучшими спектрометрическими характеристиками обладает кристалл NaI, активированный Tl [NaI (Tl)], который имеет линейную зависимость светового выхода от энергии частицы для электронов с энергией e £ 1 кэв и для протонов с энергией e £ 0,4 Мэв, а также инертные газы.
Для исследования g-квантов и электронов высоких энергий NaI (Tl) в качестве сцинтиллятора также является наиболее подходящим, так как он обладает высокими плотностью (3,67 г/см3) и эффективным атомным номером. Высокий световой выход и хорошая прозрачность позволяют получить в С. с. хорошую разрешающую способность по энергии. При толщине кристалла 50 см разрешающая способность De даётся формулой
.Для электронов и g-квантов с энергией e ~ 1 Гэв De достигает 1%.
В физике высоких энергий для измерения энергии налетающей частицы e ~ 10—100 Гэв иногда используются гигантские секционированные С. с. полного поглощения, в которых масса сцинтиллятора достигает десятков и сотен тонн. Измерение полной выделенной энергии в ядерном каскаде позволяет определить энергию налетающей частицы с точностью, достигающей ± 10%.
Благодаря высокой эффективности регистрации различных частиц и излучений, а также быстродействию, С. с. нашёл широкое применение в ядерной спектроскопии и спектроскопии частиц высоких энергий. В области малых энергий (£ 1 Мэв) С. с. уступают в энергетическом разрешении пропорциональным счётчикам и полупроводниковым детекторам.
Лит. см. при ст. Сцинтилляционный счётчик.
В. С. Кафтанов.
Сцинтилляционный счётчик
Сцинтилляцио'нный счётчик, прибор для регистрации ядерных излучений и элементарных частиц (протонов, нейтронов, электронов, g-квантов, мезонов и т. д.), основными элементами которого являются вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор), и фотоэлектронный умножитель (ФЭУ). Визуальные наблюдения световых вспышек (сцинтилляций) под действием ионизирующих частиц (a-частиц, осколков деления ядер) были основным методом ядерной физики в начале 20 в. (см. Спинтарископ). Позднее С. с. был полностью вытеснен ионизационными камерами и пропорциональными счётчиками. Его возвращение в ядерную физику произошло в конце 40-х гг., когда для регистрации сцинтилляций были использованы многокаскадные ФЭУ с большим коэффициентом усиления, способные зарегистрировать чрезвычайно слабые световые вспышки.
Принцип действия С. с. состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны (см. Люминесценция). Фотоны, попадая на катод ФЭУ, выбивают электроны (см. Фотоэлектронная эмиссия), в результате чего на аноде ФЭУ возникает электрический импульс, который далее усиливается и регистрируется (см. рис.). Детектирование нейтральных частиц (нейтронов, g-квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и g-квантов с атомами сцинтиллятора.
В качестве сцинтилляторов используются различные вещества (твёрдые, жидкие, газообразные). Большое распространение получили пластики, которые легко изготовляются, механически обрабатываются и дают интенсивное свечение. Важной характеристикой сцинтиллятора является доля энергии регистрируемой частицы, которая превращается в световую энергию (конверсионная эффективность h). Наибольшими значениями hобладают кристаллические сцинтилляторы: NaI, активированный Tl [NaI (Tl)], антрацен и ZnS. Др. важной характеристикой является время высвечивания t, которое определяется временем жизни на возбуждённых уровнях. Интенсивность свечения после прохождения частицы изменяется экспоненциально:
, где I— начальная интенсивность. Для большинства сцинтилляторов t лежит в интервале 10–9 — 10–5 сек. Короткими временами свечения обладают пластики (табл. 1). Чем меньше t, тем более быстродействующим может быть сделан С. с.