-->

Большая Советская Энциклопедия (ПА)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (ПА), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (ПА)
Название: Большая Советская Энциклопедия (ПА)
Дата добавления: 15 январь 2020
Количество просмотров: 92
Читать онлайн

Большая Советская Энциклопедия (ПА) читать книгу онлайн

Большая Советская Энциклопедия (ПА) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Параллельные прямые

Паралле'льные прямы'е в евклидовой геометрии, прямые, которые лежат в одной плоскости и не пересекаются. В абсолютной геометрии через точку, не лежащую на данной прямой, проходит хотя бы одна прямая, не пересекающая данную. В евклидовой геометрии существует только одна такая прямая. Этот факт равносилен V постулату Евклида (о параллельных). В геометрии Лобачевского (см. Лобачевского геометрия ) в плоскости через точку С (см. рис. ) вне данной прямой AB проходит бесконечное множество прямых, не пересекающих AB. Из них параллельными к AB называются только две. Прямая CE называется параллельной прямой AB в направлении от А к В , если: 1) точки В и Е лежат по одну сторону от прямой AC ; 2) прямая CE не пересекает прямую AB ; всякий луч, проходящий внутри угла ACE , пересекает луч AB . Аналогично определяется прямая CF , параллельная к AB в направлении от В к А .

Большая Советская Энциклопедия (ПА) - i009-001-210524935.jpg

Рис. к ст. Параллельные прямые.

Параллельные реакции

Паралле'льные реа'кции, совместно протекающие химические реакции, у которых по крайней мере одно исходное вещество является общим (реже говорят о П. р. в случае разных исходных веществ и общего продукта). Примеры: нитрование фенола с образованием орто-, мета- и пара- нитрофенола (одни и те же исходные вещества), нитрование смеси бензола и толуола (общее исходное вещество — азотная кислота).

Параллельные тональности

Паралле'льные тона'льности, в диатонической системе мажора и минора две тональности противоположного наклонения, имеющие один и тот же звукоряд (одинаковые знаки при ключе); тонические трезвучия П. т. включают общую большую терцию. П. т. находятся в ближайшем родстве друг с другом. На основе общности звукового состава П. т. могут объединяться в параллельно-переменный лад (например, в русской народной песне). В современной музыке в результате развития гармонической системы соотношение П. т. усложняется (в частности, в рамках смешанной мажоро-минорной и хроматической систем).

  Лит.: Способин И. В., Элементарная теория музыки, 6 изд., М., 1973.

Параллельный перенос

Паралле'льный перено'с, преобразование пространства или его части (например, переход от одной фигуры к другой), при котором все точки смещаются в одном и том же направлении на одно и то же расстояние. Совокупность всех П. п. как на плоскости, так и в пространстве образует группу , которая в евклидовой геометрии является подгруппой группы движения , а в аффинной геометрии — подгруппой группы аффинных преобразований .

Паралогизм

Паралоги'зм (от греч. paralogismós — ложное умозаключение), непреднамеренная логическая ошибка; своей непреднамеренностью, непредумышленностью П. противопоставляют софизмам — ошибкам, совершаемым в рассуждениях (спорах, диспутах) намеренно.

Паральдегид

Паральдеги'д, продукт тримеризации ацетальдегида ; бесцветная жидкость; tkип 124 °С;

Большая Советская Энциклопедия (ПА) - i-images-133792589.png

легко деполимеризуется при нагревании с небольшим количеством серной кислоты. П. — удобная форма хранения ацетальдегида; обладает слабым наркотическим действием.

Большая Советская Энциклопедия (ПА) - i009-001-225313623.jpg

Рис. к ст. Паральдегид.

Парамагнетизм

Парамагнети'зм (от пара ... и магнетизм ), свойство тел, помещенных во внешнее магнитное поле, намагничиваться (приобретать магнитный момент ) в направлении, совпадающем с направлением этого поля. Т. о., внутри парамагнитного тела (парамагнетика) к действию внешнего поля прибавляется действие возникшей намагниченности J . В этом отношении П. противоположен диамагнетизму , при котором возникающий в теле под действием поля магнитный момент ориентирован навстречу направлению напряжённости внешнего магнитного поля Н . Поэтому парамагнитные тела притягиваются к полюсам магнита (откуда название «П.»), а диамагнитные — отталкиваются. Характерным для парамагнетиков свойством намагничиваться по полю обладают также ферромагнетики и антиферромагнетики . Однако в отсутствие внешнего поля намагниченность парамагнетиков равна нулю и они не обладают магнитной структурой (взаимной упорядоченной ориентацией магнитных моментов атомов), в то время как при Н = 0 ферро- и антиферромагнетики сохраняют магнитную структуру. Термин «П.» ввёл в 1845 М. Фарадей , который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные. П. характерен для веществ, частицы которого (атомы, молекулы, ионы, ядра атомов) обладают собственным магнитным моментом, но в отсутствие внешнего поля эти моменты ориентированы хаотически, так что J = 0. Во внешнем поле магнитные моменты атомов парамагнитных веществ ориентируются преимущественно по полю. В слабых полях намагниченность парамагнетиков растет с ростом поля по закону J = c Н, где c — магнитная восприимчивость 1 моля вещества, для парамагнетиков всегда положительная и обычно равная по порядку величины 10-5 — 10-3 . Если поле очень велико, то все магнитные моменты парамагнитных частиц ориентируются строго по полю (достигается магнитное насыщение). С повышением температуры Т при неизменной напряжённости поля возрастает дезориентирующее действие теплового движения частиц и магнитная восприимчивость убывает — в простейшем случае по Кюри закону c = С/Т (С — постоянная Кюри, зависящая от природы вещества). Отклонения от закона Кюри (см. Кюри — Вейса закон ) в основном связаны с взаимодействием частиц (влиянием кристаллического поля). П. свойствен: многим чистым элементам в металлическом состоянии (щелочные металлы, щёлочноземельные металлы, некоторые металлы переходных групп с незаполненным d -слоем или f- слоем электронной оболочки — группы железа, палладия, платины, редкоземельных элементов, актиноидов ; а также сплавы этих металлов); солям группы железа, группы редкоземельных элементов от Ce до Yb и актиноидов и их водным растворам; парам щелочных металлов и молекулам газов (например, O2 и NO); небольшому числу органических молекул («бирадикалам»); ряду комплексных соединений . Парамагнетиками становятся ферро- и антиферромагнитные вещества при температурах, превышающих, соответственно, температуру Кюри или Нееля (температуру фазового перехода в парамагнитное состояние).

  Существование у атомов (ионов) магнитных моментов, обусловливающих П. веществ, может быть связано с движением электронов в оболочке атома (орбитальный П.), со спиновым моментом самих электронов (спиновый П.), с магнитными моментами ядер атомов (ядерный П.). Магнитные моменты атомов, ионов, молекул создаются в основном спиновыми и орбитальными моментами их электронных оболочек. Они примерно в тысячу раз превосходят магнитные моменты атомных ядер (см. Магнетон ). П. металлов слагается в основном из П., свойственного электронам проводимости (так называемый парамагнетизм Паули), и П. электронных оболочек атомов (ионов) кристаллической решётки металла. Поскольку движение электронов проводимости металлов практически не меняется при изменении температуры, П., обусловленный электронами проводимости, от температуры не зависит. Поэтому, например, щелочные и щёлочноземельные металлы, у которых электронные оболочки ионов лишены магнитного момента, а П. обусловлен исключительно электронами проводимости, обладают магнитной восприимчивостью, не зависящей от температуры. В тех веществах, у которых нет электронов проводимости и магнитным моментом обладает лишь ядро (например, у изотопа гелия 3 He), П. крайне мал (c~10-9 —10-12 ) и может наблюдаться лишь при сверхнизких температурах (Т < 0,1К). Парамагнитная восприимчивость диэлектриков , согласно классической теории П. Ланжевена (1906), определяется формулой c = Nma2/3kT, где N — число магнитных атомов в 1 моле вещества, ma магнитный момент атома, к — Больцмана постоянная . Эта формула была получена методами статистической физики для системы практически не взаимодействующих атомов, находящихся в слабом магнитном поле или при высокой температуре (когда mаН << kT ). Она даёт теоретическое объяснение Кюри закону . В сильных магнитных полях или при низких температурах ma H >> kT ) намагниченность парамагнитных диэлектриков стремится к Nma2 (к насыщению). Квантовая теория П., учитывающая квантование пространственное момента mа (Л. Бриллюэн , 1926), даёт аналогичное выражение для восприимчивости (диэлектриков (при ma H << kT ): c =NJ (J + 1)mа2 gj2 /3кТ , где J — квантовое число , определяющее полный момент количества движения атома, gjЛанде множитель . Парамагнитная восприимчивость полупроводников cпэ , обусловленная электронами проводимости, в простейшем случае зависит от температуры Т экспоненциально

Перейти на страницу:
Комментариев (0)
название