Битва за скорость. Великая война авиамоторов
Битва за скорость. Великая война авиамоторов читать книгу онлайн
Борьба за господство в воздухе — это прежде всего ВОЙНА МОТОРОВ. Опыт Второй Мировой показал, что именно превосходство в скорости является решающим фактором в воздушном бою, а отставание СССР в моторостроении стало главной ахиллесовой пятой наших ВВС в Великой Отечественной войне. Вся история авиации есть ожесточенная БИТВА ЗА СКОРОСТЬ, а значит — за мощность авиадвигателей, по праву считающихся вершиной технологии и доказательством научно-технической состоятельности государства.
Эта книга — первое серьезное исследование великой войны моторов, продолжавшейся весь XX век и определившей развитие авиапромышленности, — от первых поршневых двигателей до новейших газотурбинных, от неуклюжих этажерок, летавших со скоростью мопеда, до гиперзвуковых стратосферных суперджетов последнего поколения. Будучи признанным авторитетом в области проектирования авиационных двигателей с более чем 40-летним стажем, автор лично участвовал в этой битве за скорость, а его книга не только в высшей степени компетентна, но еще и на редкость увлекательна, читаясь как захватывающий технотриллер.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Не менее серьезными проблемами были задир поршней, износ цилиндров и колец, коробление седел клапанов, прогар выхлопного клапана. Решение этих проблем никто подсказать не мог — со всем этим справлялись конструкторы КБ. Простые копиисты стали бы в тупик при любом таком дефекте и запросили бы помощи из-за рубежа. Как вспоминал П. А. Соловьев, ставший преемником А. Д. Швецова в 1953 г.: «Вспоминается такой эпизод. Мы со Швецовым долгое время занимались бесступенчатой передачей для того, чтобы улучшить характеристики самолета, особенно для воздушного боя. Сделана была такая механическая передача: на валу вращается желоб, свернутый в кольцо. Одна половинка на одной стороне, вторая — на другой, а между ними ролик. И в зависимости от положения ролика идет передача с большего на меньшее и наоборот. А поскольку вы можете менять положение ролика бесконечно, то и этих передач получается бесконечно много. Сложные, конечно, устройства, но все-таки работали, на моторе работали. Я помню, как-то вечером поставили на испытания очередную конструкцию и произошла поломка привода, раскололся корпус, редуктор, шестерни высыпались, как из мешка. А договорились, чтобы я позвонил Аркадию Дмитриевичу, как только первую гонку сделаем. Я позвонил ему. «Ну как?» — «Так сломалась, сломалась крупно». — «А кто-нибудь пострадал?» — «Нет». — «Ну и хорошо. А чего ты расстраиваешься? Думал, обойдешься без этого вообще? Такого не бывает. Давай все это запломбируй, чтобы ночью не возиться, а с утра разбирайтесь, что произошло».(Соловьев П. А. О времени и о себе).
Чем опытный инженер отличается от неопытного при разработке новой принципиально конструкции? Оба, по большому счету, ни черта не знают. Но… опытный инженер не боится, знает, что предстоит доводка (а любой эксперимент — это и вопрос, и ответ, лучше бы, конечно, только ответ), а неопытный — боится. И еще: опытный инженер быстрее учится на своих ошибках.
Идея четырехтактного цикла впервые была предложена французским инженером Альфонсом Бо де Роша (Beau de Rochas) в 1861 г.:
«Поставленная задача имела, очевидно, единственно практически правильным конструктивным решением применение только одного цилиндра, во-первых, для того, чтобы последний имел максимально возможные размеры, во-вторых, чтобы уменьшить до абсолютного минимума сопротивление газов движению. Это, естественно, приводит к осуществлению в одной и той же полости цилиндра в течение четырех последовательных ходов поршня следующих процессов:
1. Всасывание в течение целого хода поршня.
2. Сжатие в течение следующего хода.
3. Воспламенение в мертвой точке и расширение в течение третьего хода.
4. Выталкивание сгоревших газов из цилиндра на четвертом и последнем ходе» (Beau de Rochas «Nouvelles recherches», p. 30. Цит. по Гюльднер, с. 730).
Однако приоритет реализации этого цикла принадлежит немецкому инженеру Николаусу Отто. Модификацию этого цикла разработал его соотечественник Рудольф Дизель. Промышленное производство поршневых двигателей внутреннего сгорания организовали тоже немцы — Карл Бенц и Готтлиб Даймлер. Даймлер и запатентовал V-образную схему расположения цилиндров мотора. Революционным было и изобретение Робертом Бошем искровой системы зажигания током высокого напряжения от магнето в конце 1880-х гг. Только появление таких эффективных (большой удельной — на единицу массы — мощности) двигателей внутреннего сгорания позволило создать возможность рождения таких аппаратов тяжелее воздуха, как самолет и вертолет. Это произошло в конце XIX века. Доминирование эры воздухоплавания (аппараты легче воздуха) и тяжелых двигателей внешнего сгорания (паровых машин) закончилось. Попытки продлить жизнь коммерческому и военному воздухоплаванию с помощью дирижаблей продолжались до аварии (пожара) пассажирского «водородного» «Гинденбурга» в Нью-Йорке в мае 1937 г. при швартовке после перелета через Атлантику.
В отличие от летящего самолета, имеющего внешние, хорошо видные обтекаемые «красивые» аэродинамические формы, «красоту» двигателя внутреннего сгорания трудно увидеть. Требуется интеллектуальное усилие, чтобы в этом нагромождении «железа» распознать чудо инженерной мысли. Все самое интересное в авиамоторе происходит внутри.
Как известно, первый в мире установившийся управляемый полет самолета-биплана «Флайер» («Летающий») конструкции братьев Райт с мотором Тэйлора мощностью 12 л.с. и массой около 80 кг (удельная мощность — 0,15 л с./кг) состоялся 17 декабря 1903 г. С выбором мотора для первого в мире самолета была проблема: ни один из существовавших тогда автомобильных моторов не обеспечивал необходимой для самолета удельной (на 1 кг массы) мощности. Больше, чем 0,06, автомобильные моторы того времени не имели, а нужно было по крайней мере 0,125. Требуемое соотношение было достигнуто инновационным для того времени применением алюминиевого литья для корпуса. Мотор для «Флайера» был четырехцилиндровый, с горизонтальным расположением цилиндров жидкостного охлаждения. Диаметр цилиндра и ход поршня DxS составляли 102*102 мм («квадрат»). Два пропеллера приводились цепной передачей. Вообще-то надо было исхитриться, чтобы полететь. Братья Райт в первую очередь были специалистами по аэродинамике, в том числе и по аэродинамике пропеллера. Именно благодаря разработанному ими очень эффективному пропеллеру, т. е. преобразователю мощности мотора в силу тяги, удалось максимально использовать весьма ограниченную мощность мотора. Вообще, при изучении истории авиамоторов нельзя забывать о движителях — пропеллерах — воздушных винтах. Их история не менее интересна, а сами винты развиваются до сих пор. И это неслучайно: для дозвукового экономичного полета винт является идеальным движителем. Сегодня снова стоит задача разработки эффективных многолопастных винтов с низким уровнем шума для перспективных магистральных самолетов.
«Фишкой» же пропеллера Уилбура Райта была примененная им стреловидность лопасти в концевых сечениях, так называемый «end bent» («отогнутый конец»), уменьшающий так называемую статическую дивергенцию винта, т. е. раскрутку под влиянием аэродинамических сил.
Братья Райт «обхитрили» профессора Самюэля Лэнгли, тоже готовившего полет своего самолета «Аэродром» с мотором Мэнли — Бальтцера мощностью 52 л.с. в 1903 г. Мощности 12 л.с. не хватало, чтобы разогнаться «Флайеру» до скорости отрыва 45 км/час по дорожке длиной 20 м, и братья Райт «нашли» место в Северной Каролине с постоянно дующим встречным ветром 30 км/час для взлета. Мотор конструкции Мэнли имел существенно лучшую (более, чем в 3 раза) удельную мощность в сравнении с мотором Тэйлора, но Лэнгли не повезло. Его «Аэродром» поднял в воздух Гленн Кёртис только в 1913 г., когда Лэнгли уже не было на этом свете. Отношение мощности мотора к его массе в результате технического прогресса эволюционировало от 0,55 л.с./кг (мотор Мэнли — Бальтцера) до 2,2 л.с./кг (Кертис — Райт R-3350).
Несомненно, в начале XX века передовой авиационной державой была Франция. То, что первый полет самолета с мотором был совершен в США братьями Уилбуром и Орвилом Райтами, есть историческая случайность. Развитие моторостроения определяло тогда успех в авиации. Первым мотором, спроектированным специально для авиации, был ставший знаменитым «Антуанетт», V-образный мотор водяного охлаждения мощностью 24 л.с. и отношением мощности к массе 0,5 л.с./кг. Его разработал в 1902 г. француз Леон Левавассер (Levavasseur). В этом моторе были применены инновации: легкие алюминиевые корпуса, функцию тяжелого маховика, сглаживающего крутящий момент на валу, выполняло увеличенное до 8 количество цилиндров, выполненных по схеме «V». В результате длина 8-цилиндрового мотора была такой же, как 4-цилиндрового. Самой тяжелой частью мотора тогда были цилиндры, изготавливаемые литьем из чугуна. Стенки цилиндра имели толщину 5 мм. Для снижения их массы Левавассер уменьшил ход поршня и соответственно длину цилиндров, и увеличил число оборотов до 1100 об/мин. Рубашка охлаждения была выполнена из тонкого листа латуни. Разработана была и новая система подачи масла. Правда, первые авиамоторы не имели карбюратора, и поэтому управление режимом мотора было затруднено. Поскольку первый заказ этого мотора от Вооруженных сил Франции для постановки на дирижабли задерживался (как обычно), то Левавассер предложил свой мотор для гоночных лодок. Сделка состоялась, а по первому имени дочери главного спонсора конструктор и назвал свой мотор. Успех был полный. Более того, эта гоночная лодка постепенно стала приобретать черты гидросамолета (плоское днище и т. п.), т. е. летающей лодки, в некотором смысле явившись предком последней, появившейся через пять лет.