Битва за скорость. Великая война авиамоторов
Битва за скорость. Великая война авиамоторов читать книгу онлайн
Борьба за господство в воздухе — это прежде всего ВОЙНА МОТОРОВ. Опыт Второй Мировой показал, что именно превосходство в скорости является решающим фактором в воздушном бою, а отставание СССР в моторостроении стало главной ахиллесовой пятой наших ВВС в Великой Отечественной войне. Вся история авиации есть ожесточенная БИТВА ЗА СКОРОСТЬ, а значит — за мощность авиадвигателей, по праву считающихся вершиной технологии и доказательством научно-технической состоятельности государства.
Эта книга — первое серьезное исследование великой войны моторов, продолжавшейся весь XX век и определившей развитие авиапромышленности, — от первых поршневых двигателей до новейших газотурбинных, от неуклюжих этажерок, летавших со скоростью мопеда, до гиперзвуковых стратосферных суперджетов последнего поколения. Будучи признанным авторитетом в области проектирования авиационных двигателей с более чем 40-летним стажем, автор лично участвовал в этой битве за скорость, а его книга не только в высшей степени компетентна, но еще и на редкость увлекательна, читаясь как захватывающий технотриллер.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Наконец, со всеми проблемами справились, мотор воспроизвели, он начал свою жизнь на самолете. И тут вскоре возникает проблема, которую просто копиист никак не сможет решить. Любой мотор постоянно проходит модернизацию — увеличивается его мощность, на основании опыта эксплуатации вносятся изменения в его конструкцию с целью повышения ресурса. Мотор «живет». Таким образом, мотор в конце своего жизненного цикла существенно отличается от первоначального прототипа. Для решения этой задачи нужен инженер, а не техник-копиист. Только тогда конструкторское бюро проектирования авиадвигателей становится состоявшимся. По сути, степень модернизации мотора (%% увеличения мощности, ресурса и экономичности) в течение его жизненного цикла является количественным критерием зрелости КБ.
Для примера рассмотрим краткую историю развития одного из самых известных и удачных советских авиамоторов ALU-82. Как известно, прототипом этого мотора был лицензионный американский мотор воздушного охлаждения, однорядная девятицилиндровая звезда Cyclone («Циклон»), разработанный на самой именитой фирме Wright (Райт) мощностью 635 л.с., прототип которого мощностью 400 л.с. был разработан в 1926 г. В советском авиапроме он получил стандартное обозначение М-25, т. е. «мотор—25-я модель». Сборка этого мотора из американских комплектов началась на только что построенном пермском заводе им. Сталина (№ 19) в июне 1934 г. Станочное оборудование этого завода требуемой точности изготовления деталей тоже было закуплено в США. А в 1935 г. мотор уже начали собирать из деталей, изготовленных в Перми.
Техническим директором завода, а фактически главным конструктором Аркадием Дмитриевичем Швецовым сразу же были созданы конструкторские группы для разработки модификаций этого двигателя. Очевидно, что мотор «Циклон» имел перспективу повышения мощности, т. е. был спроектирован «с запасом»: в среднем съем мощности с одного цилиндра следовало ожидать 100 л.с.
Таким образом, можно было ожидать успеха в форсировании мотора по мощности по крайней мере до 900 л.с., а с постановкой второго ряда «звезды» — и до 1800 л.с. Также было ясно, что одним из ключевых элементов повышения мощности является воздушный нагнетатель, компенсирующий уменьшение плотности воздуха с увеличением высоты полета. В соответствии с этими задачами и были созданы три конструкторские группы из молодых конструкторов: группа однорядных звезд, группа двухрядных звезд и группа нагнетателей.
Первой модификацией мотора, получившей индекс М-25А, было его форсирование по оборотам до мощности 715 л.с., осуществленное уже в 1936 г. Это было, по сути, простое использование первоначального американского задела, но и одновременно первая школа самостоятельного принятия решений, которых подсказать было некому. До какой мощности первоначальная конструкция позволяет форсировать мотор? Известно, что при увеличении подачи топлива мощность мотора растет пропорционально кубу оборотов. Но одновременно увеличивается и количество выделяемого тепла, крутящий момент на валу и динамические нагрузки от дисбаланса вращающихся масс. Нужен был успех, а риски этого успеха или провала целиком лежат на главном конструкторе. Ведь в случае неудачи дальнейшее движение по пути развития мотора могло быть остановлено директивным образом — примеров сколько угодно. В 1937 г. мотор был Форсирован до уровня мощности 775 л с. и получил обозначение М-25В. Это была начальная конструкторская школа освоения техники, проверки правильности расчетов нагрузок, отработки технологии испытаний.
Первой самостоятельной модификацией швецовского КБ следует считать мотор М-62 (разработка 1937 г.) мощностью 1000 л.с., который вышел на мировой уровень по параметрам и успешно применялся на массовом истребителе И-153. Удача разработки этого мотора свидетельствовала, что КБ состоялось. Одновременно велись самостоятельные конструкторские разработки двухрядных звезд: вначале 18-цилиндрового М-25Д, позже получившего обозначение М-70, а затем 14-цилиндрового М-80. Диаметр (155,5 мм) и ход поршня (174,5 мм) оставались неизменными с «Циклона». Читатель должен обратить внимание на точность указания номинальных размеров (до 0,5 мм), а это говорит, что допуск на изготовление должен быть на порядок меньше (50 микрон), а мерительный инструмент — еще более точным.
Двухрядные звезды — это уже качественно другой уровень квалификации конструирования. При их создании возникают сложные проблемы, которые приходится решать самостоятельно. И здесь при создании мотора мы сталкиваемся еще с одной фундаментальной проблемой: любой дефект, поломка имеет системный характер, т. е. для понимания отрицательного «результата» необходимо построить логически правильную цепочку развития событий во времени, чтобы определить причину дефекта. Кроме того, поиск идет, как правило, при ограниченной объективной информации о поведении системы ввиду ограниченности штатных или даже специальных (на опытном моторе) средств измерений (особенно в довоенные годы). Определение причины дефекта требует самой высокой квалификации, методом «тыка» ни один мотор не довести до товарного состояния — слишком сложная система.
Вот один из примеров. С форсированием по мощности мотора-прототипа М-25 начала проявляться тряска мотора, т. е. его корпуса, которая передавалась через подвеску и на самолет. Чем больше увеличивалась мощность мотора, тем сильнее была тряска. Происходила разбалансировка сил инерции, в результате чего возникали сильные динамические нагрузки на опоры ротора. Но где причина? При анализе оказалось, что при расчете уравновешивания сил инерции форсированного мотора, кроме массы вращающихся деталей, необходимо учитывать и присоединенную массу масла в полостях шатунных шеек [10].
Какие дефекты были присущи звездообразным моторам воздушного охлаждения? Из их краткого описания и методов их устранения можно понять и сложность создания мотора. Малая плотность воздуха (в сравнении с водой) создавала проблему съема тепла и тем самым охлаждения цилиндров. Перегрев цилиндров и клапанов сопровождал всю историю моторов воздушного охлаждения. Эта проблема существенно усугублялась при постановке второго ряда звезды вслед за первым рядом, затеняющим этот второй ряд. Тот, кто видел эти моторы, наверняка заметил сложнейшую развитую систему ребер охлаждения цилиндров, которые увеличением площади теплоотдачи компенсировали малую плотность воздуха. Нужны сотни часов продувок десятков вариантов расположения ребер с измерением полей температуры, чтобы решить проблему (и то без гарантии). Например, для улучшения охлаждения был применен поворот головки цилиндра на 15° по отношению к вектору скорости набегающего воздуха. Это, в свою очередь, потребовало изменения кинематики классического клапанного механизма. Потребовалось разработать новые законы движения звеньев (рычагов, толкателей, тяг и др.) и профилей кулачков. Как мы увидим ниже, диаметр цилиндров авиамоторов более 160 мм не применялся именно из-за проблемы их перегрева. Количество выделяемого тепла в объеме цилиндра пропорционально кубу линейного размера, а съем тепла — только квадрату размера (площади). Этот «закон куба-квадрата», ограничивающий конструкторов, действует во многих технических системах. Учитывая многорежимность работы мотора и множество сочетаний высоты, скорости полета самолета, а также климатических условий эксплуатации (зима, лето), «настроить» пассивную систему охлаждения цилиндров для любого сочетания условий чрезвычайно сложно.
Вторым серьезным дефектом звездообразных моторов явилась их склонность к заклиниванию втулки подшипника, так называемого главного шатуна (в «звезде» все шатуны, кроме главного, являются прицепными к последнему, а все усилие на коленчатый вал передается через главный шатун). Очевидно, что с увеличением мощности эта проблема также усугублялась. Одно время казалось, что она вообще не имеет решения и ставит предел развиваемой мощности. В 1940 г. в КБ Швецова пригласили из ЦИАМ специалиста по подшипникам скольжения С. Н. Куцаева. Далее мы даем слово участнику этих событий инженеру КБ В. В. Даровских: «Изучив характер износа втулки главного шатуна и шатунной шейки коленчатого вала, он предложил образующую втулки выполнить по гиперболе с мнимой осью вдоль оси шатунной шейки с переменным подлине подшипника зазором, увеличивающимся от середины к краям. Однако первые испытания не показали улучшения работы. Анализ показал, что увеличенные зазоры у концов втулки приводили к вытеканию масла из подшипника. Для обеспечения нормального маслоснабжения были поставлены боковые кольца с отверстиями и пружинами, а от проворота втулка была зафиксирована шлицами. Кроме того, было введено многослойное покрытие трущейся поверхности втулки: никель, медь, серебро, индий. Проблема была решена» [10]. В решении проблемы этого конкретного дефекта мы видим и некую общую методологию решения — комплексный подход.