Глубина 11 тысяч метров. Солнце под водой

На нашем литературном портале можно бесплатно читать книгу Глубина 11 тысяч метров. Солнце под водой, Пикар Жак-- . Жанр: Природа и животные / Путешествия и география / Прочая документальная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Глубина 11 тысяч метров. Солнце под водой
Название: Глубина 11 тысяч метров. Солнце под водой
Автор: Пикар Жак
Дата добавления: 16 январь 2020
Количество просмотров: 362
Читать онлайн

Глубина 11 тысяч метров. Солнце под водой читать книгу онлайн

Глубина 11 тысяч метров. Солнце под водой - читать бесплатно онлайн , автор Пикар Жак

В книге «Глубина 11 тысяч метров» рассказывается о создании и погружении батискафа «Триест» в Марианскую впадину на глубину 11 тысяч метров, описываются интереснейшие научные наблюдения.

В 1969 году подводная лодка мезоскаф «Бен Франклин» опустилась под уровень океана у полуострова Флорида и прошла с течением Гольфстрим 1500 миль за тридцать дней. Шесть человек во главе с Жаком Пикаром получили возможность наблюдать мир таинственных глубин, никогда не посещавшийся человеком.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 50 51 52 53 54 55 56 57 58 ... 105 ВПЕРЕД
Перейти на страницу:

В наши дни грузовые суда стараются учитывать океанские течения, но есть еще немало капитанов, которые систематически пренебрегают этим фактором.

13. РХ-15

После того как компания «Граммен» в основном одобрила проект, можно было идти дальше. И первыми двумя важными шагами было уточнить характер экспедиции и приступить к строительству нового мезоскафа. Вместе с Уолтером Скоттом и его сотрудниками Уолтером Манком, Ли Гейером, Рэем Манцом и Эдмондом Рабутом я разработал в общих чертах нашу программу.

Суть моего замысла заключалась в том, чтобы месяц идти дрейфом в Гольфстриме в подводной лодке, размеры которой позволяли бы разместить команду и ученых. Здесь нужно кое-что объяснить. На поверхности моря успешно осуществлялись долгие дрейфы; всем памятно славное плавание Тура Хейердала на «Кон-Тики» в 1947 году. Но еще никто не затевал дрейфа под водой. Причина очень проста: большинство подводных лодок, в том числе военных, не рассчитаны на то, чтобы висеть без движения на какой-то заданной глубине. Сжимаемость их корпусов больше сжимаемости воды, поэтому при попытке зависнуть в толще моря малейшая тенденция к погружению увлечет лодку в чуть более плотную среду, однако не настолько плотную, чтобы возместить сжатие корпуса и соответственный рост удельного веса. Относительный вес подводной лодки увеличится, и судно будет погружаться дальше. А при тенденции к всплытию лодка оказывается в среде, плотность которой недостаточна, чтобы возместить относительную потерю веса из-за расширения корпуса, и продолжает подниматься. Так что обычная подводная лодка в однородной по составу воде, чтобы держаться на одном уровне, должна двигаться, стабилизируясь либо элеронами, либо горизонтальными рулями, либо забором воды для погружения и откачкой для всплытия. Такие маневры — их можно поручить автоматике — обеспечивают лодке определенную стабильность, но требуют большого расхода энергии и к тому же вызывают шум, мешающий акустическим измерениям.

Выход заключается в том, чтобы сделать гораздо более жесткий корпус, сжимаемость которого, естественно, меньше сжимаемости окружающей воды. Это и обеспечит стабильность, необходимую для долгого дрейфа на умеренной глубине. Уходя вниз, такая лодка будет относительно легче воды, и погружение само по себе остановится. Всплывая, лодка станет тяжелее, точнее говоря, ее удельный вес возрастет по сравнению с удельным весом среды, и всплытие прекратится. Разумеется, утяжеление корпуса заставляет вернуться к проблеме плавучести — основной проблеме всяких подводных лодок.

Посмотрите на чертежи военной лодки, и вы удивитесь, какой вес приходится на оборудование, играющее только негативную роль: торпеды, орудия, мины и так далее. Устранение всех этих атрибутов дает строителю гражданской подводной лодки два преимущества. Во-первых, он может применить более прочный корпус, сжимаемость которого меньше сжимаемости воды, — о выгодах этого мы только что говорили. Во-вторых, прочный корпус позволяет догружаться глубже при том же коэффициенте безопасности. Кроме того, гражданская лодка может выиграть в весе на электронном оборудовании, приобретающем все большее значение на военных судах.

Приблизительно основные желаемые характеристики выглядели так:

рабочая глубина — около 600 метров;

сжимаемость — меньше сжимаемости боды на исследуемых глубинах;

коэффициент безопасности — не меньше 2;

полезная нагрузка в виде научного оборудования — не меньше 2 тонн;

снаряжение на шесть человек на полтора месяца.

В общем желаемые характеристики были очень близки к данным «Огюста Пикара», правда, при совсем другом внутреннем оборудовании. Я даже предлагал компании «Граммен» купить мезоскаф «Огюст Пикар» (тогда еще шли торги), и переговоры об этом начались, но ни к чему не привели. С первых дней нашего сотрудничества инженеры «Граммена» говорили мне, что хотят приобрести необходимый опыт и овладеть всеми секретами производства. Дескать, можно купить подводную лодку и научиться налаживать и совершенствовать ее механизмы, освоить ее управление, но ведь процесс строительства останется неизученным. Что до меня, то при всей моей привязанности к первому мезоскафу я радовался случаю построить новый, к тому же в идеальных условиях.

Мы решили, насколько будет возможно, применять методы и технику, которые оправдали себя при создании первого мезоскафа, разумеется, совершенствуя их.

Сопоставим теперь отдельные характеристики с данными мезоскафа «Огюст Пикар».

Выбирая для первого мезоскафа предельную расчетную глубину около 700 метров при коэффициенте безопасности 2, я руководствовался двумя соображениями. Во-первых, при туристских погружениях в Женевском озере, наибольшая глубина которого 310 метров, мезоскафу был обеспечен коэффициент безопасности больше 4. Во-вторых, я предусматривал после Выставки возможность погружений в море на 600–700 метров — до этой глубины доходит дневной свет — с коэффициентом безопасности, равным 2. Расчеты показали, что для этого понадобятся 38-миллиметровые листы избранной нами марки стали.

Занявшись новым мезоскафом, я исходил из того, что фирма «Джованьола» располагает листами 35-миллиметровой толщины. Это было уже после того, как я в основном определил конфигурацию корпуса, но до телефонного звонка компании «Граммен». Уменьшение толщины примерно на восемь процентов возмещалось особо придирчивыми испытаниями и высоким качеством работ, которое обеспечивала фирма «Джованьола». Кроме того, учитывая, какую важную роль будет играть стабильность под водой, я решил несколько увеличить жесткость корпуса за счет более толстых кольцевых шпангоутов; это позволило несколько уменьшить его сжимаемость.

Наибольшую глубину определили в 610 метров. Такая точность может показаться нарочитой и необоснованной, но вы увидите, что она была необходима, особенно при сотрудничестве с американскими военными моряками. А поскольку я теперь не был так стеснен в средствах, мне разрешили сделать корпус несколько длиннее. В конечном счете мы остановились на таких размерах:

наружный диаметр — 3,15 метра (как и у «Огюста Пикара»);

внутренний диаметр — 3,08 метра;

длина цилиндрической секции — 11,60 метра;

длина всего корпуса (не считая арматуры иллюминаторов) — 14,75 метра;

общая наружная длина — 14,82 метра.

Расчет корпуса подводной лодки — дело очень сложное, тем более когда речь идет о цилиндре с шпангоутами. Неоценимым подспорьем для современных математиков служат счетные машины. После того как корпус был рассчитан обычными методами, один из моих сотрудников, Франсуа Эммер, работающий в Швейцарском федеральном технологическом институте, обратился с той же задачей в вычислительный центр в Цюрихе. И мы не только проверили наши основные выкладки, но и получили множество ценнейших данных чуть ли не на каждый сантиметр. Теперь мы знали напряжение металла в нужных нам точках и его деформацию в зависимости от глубины. Заодно мы получили некоторое представление о проницательности вычислительных машин. Задавая программу, оператор нажал не тот клавиш — букву «О» вместо нуля. Машина возмутилась и пригрозила полной забастовкой, если он не будет более внимательным.

— Постойте, — объявила она, — вы уверены, что здесь буква «О», а не нуль? (Понятно, на ленте ее «мысль» была выражена несколько проще.)

Смущенный оператор извинился, нажал на правильный клавиш, и машина возобновила работу.

Независимо от наших исследований в Швейцарии расчет корпуса был поручен еще одной вычислительной машине в Беспейдже. Ответы в точности совпали, и не потому, что обе машины были изготовлены одной компанией, а потому, что программу составили правильно. Математики «Граммена» вывели обобщенную формулу, после этого мы могли обращаться к ним с любой задачей, касающейся цилиндрического корпуса подводной лодки, и вычислительная машина тотчас выдавала точный ответ о толщине листа, геометрии шпангоутов и сжимаемости корпуса применительно к любой заданной глубине и к любой марке стали или другого материала.

1 ... 50 51 52 53 54 55 56 57 58 ... 105 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название