-->

Менеджмент. Учебник

На нашем литературном портале можно бесплатно читать книгу Менеджмент. Учебник, Абчук Владимир-- . Жанр: Учебники. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Менеджмент. Учебник
Название: Менеджмент. Учебник
Дата добавления: 16 январь 2020
Количество просмотров: 370
Читать онлайн

Менеджмент. Учебник читать книгу онлайн

Менеджмент. Учебник - читать бесплатно онлайн , автор Абчук Владимир

Учебник соответствует государственному стандарту для высшего профессионального образования и содержит необходимый объем сведений по направлению «Менеджмент». Главной целью учебника является раскрытие содержания современного менеджмента, ознакомление с его методологией, основными категориями и понятиями, создание теоретической и практической базы для самостоятельной деятельности менеджера в российских условиях.

Книга заинтересует не только студентов вузов и других учащихся, но и широкие круги практикующих менеджеров и государственных служащих, озабоченных ныне проблемами управления организациями: предприятиями, фирмами, учреждениями.

Автор учебника заслуженный деятель науки России, академик Международной академии информатизации профессор В. А. Абчук преподает менеджмент в высшей школе, сам является менеджером-предпринимателем.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 79 80 81 82 83 84 85 86 87 ... 204 ВПЕРЕД
Перейти на страницу:

0

0

3

Посмотрев табличку, вы можете уверенно предсказать, например, что из пяти вошедших будет не менее двух мужчин (или женщин). Вероятность этого события очень большая – 81 %. В восьми случаях из десяти ваше предсказание сбудется.

Этот пример поможет нам приоткрыть один из профессиональных секретов гадалок и прочих прорицателей. Предположим, гадалка предсказывает пять каких-то событий, которые могут равно как произойти, так и не произойти – точно так же, как в одинаковой степени могут войти мужчина и женщина. Такими предсказаниями могут быть, например, «приятная встреча», «лихой недруг», «дальняя дорога», «получение известия», «нечаянная радость» и т. п.

Вероятность того, что сбудутся все пять предсказаний, как показывает расчет, исключительно мала – всего 3,1 %. Но легковерному человеку вполне достаточно, если состоится хотя бы не менее двух-трех из них. Заметьте, не менее – это может быть и два, и три, и четыре, и даже пять. А такое количество пророчеств – мы уже знаем – происходит с высокой вероятностью – 81 %. Поэтому-то часть сделанных гадалкой предсказаний обычно и сбывается. А легковерные люди и не подозревают, что приобщились к «таинствам» теории вероятностей.

Помимо математической стороны дела есть и не менее важные причины психологического происхождения. Вот некоторые из них. Прорицатели, как правило, люди наблюдательные. Вороша карты или перемешивая кофейную гущу, они нет-нет да и ненароком бросят взгляд на доверчивого клиента. Не болезненный ли у него вид («лихой недуг»), не горит ли его взор лихорадочным ожиданием («нечаянная радость»)? Богатый профессиональный опыт подсказывает гадалке, что, кому и как говорить. Не последнюю роль играет и чутье, интуиция. Предсказатели издавна эксплуатируют и то, что человеку свойственно принимать желаемое за действительное. Оракул так формулирует свое откровение, что понимать его можно самым различным образом – как хочется «заказчику». Вспомним предсказание, сделанное дельфийским оракулом Крезу: «Если ты нападешь на персов, великое государство погибнет». Очень уж хотелось Крезу разрушить чужое государство. Вот он и поверил. А государство-то погибло его собственное.

Из множества сделанных предсказаний люди запоминают обычно лишь те, что сбылись. Несбывшиеся пророчества в памяти людей, как правило, не сохраняются. Но стоит сбыться нескольким предсказаниям из множества сделанных, как это немедленно поднимается суеверными людьми на щит, обрастает фантастическими подробностями, обретает достоверность «факта».

ПРИМЕР 3

Какова вероятность совпадения дней рождения у любых двух человек, например, из вашей группы в 30 студентов?

На первый взгляд кажется, что поскольку в году 365 дней, то возможность такого совпадения

весьма невелика, что-нибудь около = 0,08, или 8 %. Это грубая ошибка. На самом деле следует рассуждать так.

Вначале определим вероятность празднования дня рождения какого-нибудь студента в один из дней года. Здесь число всех возможных случаев – это число возможных дней рождения в году – 365. Число интересующих нас случаев – дней рождения одного человека в году – тоже 365. Вероятность празднования дня рождения студентом в один из дней года равна = 1.

Действительно, можно с полной уверенностью сказать, что любой человек за год отпразднует свой день рождения.

Теперь возьмем любого второго студента и найдем вероятность того, что его день рождения не совпадает с днем рождения первого студента. Число всех возможных случаев – возможных дней рождения в году – остается здесь, конечно, тем же – 365, а вот число интересующих нас случаев уменьшится на 1 – ведь тот день, когда праздники могут совпадать, надо выбросить. Итак, вероятность несовпадения дня рождения второго студента с днем рождения

Менеджмент. Учебник - _54.jpg

Затем возьмем любого третьего студента вашей группы и найдем подобным же образом, что вероятность несовпадения с днем рождения

Менеджмент. Учебник - _55.jpg

И далее для всех студентов группы – в том же духе. Зададим себе такой вопрос: а какова вероятность того, что и у первого, и у второго, и у третьего, и у всех остальных студентов дни рождения не совпадут? Вероятности таких событий находят с помощью умножения.

Вероятность несовпадения дней рождения у

Менеджмент. Учебник - _56.jpg

Число сомножителей равно общему числу студентов. В нашем случае таких сомножителей должно быть 30. Стоит перемножить, и получится, что вероятность несовпадения дней рождения у всех тридцати студентов равна 0,29.

А то, что нас интересует,– вероятность совпадения – мы найдем путем вычитания этой цифры из единицы.

Вероятность совпадения дней рождения у любых двух студентов из тридцати равна 1 - 0,29 = 0,71.

Это высокая вероятность. Значит, почти наверняка в любом коллективе, где 30 человек, есть люди, родившиеся в один день.

А как быть тем коллективам, где число людей 10, 40 или 50, т. е. отличается от 30? На этот случай пригодится готовая таблица вероятностей совпадения дней рождения для разных групп людей – от 5 до 100 и более человек (табл. 8.6). Как она рассчитывается, мы уже знаем.

Таблица 8.6

Вероятности совпадения дней рождения у различных групп людей

По нашей таблице получается, что, например, если в группе 50 человек, то с вероятностью 0,97, т. е. наверняка можно считать, что дни рождения хотя бы у двух из них совпадут.

Но главный вывод, на который нас наводит история с днями рождения, значительно важнее, чем рассмотренный эпизод: вероятности совпадения любых случайных событий (не только дней рождения) оказываются во много (порой в десятки) раз больше, чем это интуитивно представляется. И то, что мы обычно считаем роковыми совпадениями, на самом деле вполне нормальное явление.

Вот еще примеры, подтверждающие это правило.

ПРИМЕР 4

«Со мной вчера произошло нечто невероятное: я встретил на Невском своего школьного приятеля, с которым не виделся 20 лет». Такая или подобная фраза часто сопровождается нелестной оценкой теории вероятностей: мол, вероятности встретиться не было никакой, и вот на тебе.

Теория вероятностей между тем здесь, как и во многих других случаях, остается на высоте. Тот, кто усомнился в ее правильности, видимо, рассуждал так: в Санкт-Петербурге четыре с лишним миллиона жителей. Один из них - упомянутый школьный товарищ. Вероятность такой встречи равна примерно одной четырехмиллионной, т. е. практически нулю. Чем же, как чудом, можно такую встречу объяснить?

Произведем грубую ориентировочную прикидку с помощью теории вероятностей. Начнем с того, что школьный приятель у вас явно не один. Предположим, что их у вас в Санкт-Петербурге 40 человек. Это сразу же увеличит вероятность встречи в 40 раз, и она станет равна одной стотысячной.

Далее, пока вы прогуливались по Невскому мимо вас прошли по крайней мере тысяча человек. Вероятность выросла в 1000 раз и стала равна одной сотой. Это тоже маловато. Но ведь на Невском вы бывали не один раз, а, скажем, 80. Вот вам вероятность и поднялась до 80 %. Теперь уже надо удивляться не тому, что встреча на Невском состоялась, а тому, что это не произошло раньше.

1 ... 79 80 81 82 83 84 85 86 87 ... 204 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название