Менеджмент. Учебник
Менеджмент. Учебник читать книгу онлайн
Учебник соответствует государственному стандарту для высшего профессионального образования и содержит необходимый объем сведений по направлению «Менеджмент». Главной целью учебника является раскрытие содержания современного менеджмента, ознакомление с его методологией, основными категориями и понятиями, создание теоретической и практической базы для самостоятельной деятельности менеджера в российских условиях.
Книга заинтересует не только студентов вузов и других учащихся, но и широкие круги практикующих менеджеров и государственных служащих, озабоченных ныне проблемами управления организациями: предприятиями, фирмами, учреждениями.
Автор учебника заслуженный деятель науки России, академик Международной академии информатизации профессор В. А. Абчук преподает менеджмент в высшей школе, сам является менеджером-предпринимателем.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
– по целям моделирования;
– по задачам (функциям) управления;
– по этапам (процедурам) управления;
– по математическим методам моделирования.
В зависимости от целей моделирования различают модели, предназначенные для:
– проектирования систем управления;
– оценки эффективности;
– анализа возможностей предприятия в различных условиях его деятельности;
– выработки оптимальных решений в различных производственных ситуациях;
– расчета организационных структур системы управления;
– расчета информационного обеспечения и т. д.
Специфика моделей этого классификационного подразделения выражается в первую очередь в выборе соответствующих критериев эффективности, а также в процедуре реализации результатов моделирования.
В зависимости от задач (функций) управления различают модели календарного планирования, управления развитием предприятия, контроля качества продукции и т. д. Модели этого подразделения ориентированы на конкретные производственно-экономические задачи и, как правило, должны обеспечивать получение результатов в численном виде.
В зависимости от этапа (процедуры) автоматизации управления модели могут быть информационными, математическими, программными. Модели этого подразделения нацелены на соответствующие этапы движения и переработки информации.
В зависимости от применяемого математического аппарата модели можно разбить на пять больших групп: экстремальные, математического программирования (планирования), вероятностные, статистические и теоретико-игровые.
К экстремальным моделям относятся модели, дающие возможность отыскания экстремума функции или функционала. Сюда относятся модели, построенные с помощью графических методов, метода Ньютона и его модификаций, методов вариационного исчисления, принципа максимума Понтрягина и др. Исходя из возможностей этих методов они применяются в первую очередь для решения задач оперативного регулирования.
Модели математического программирования (планирования) включают модели линейного программирования, нелинейного программирования, динамического программирования. Сюда же обычно относят и модели сетевого планирования.
Математическое программирование объединяет ряд математических методов, предназначенных для наилучшего распределения имеющихся в наличии ограниченных ресурсов – сырья, топлива, рабочей силы, времени, а также для составления соответствующих наилучших (оптимальных) планов действий.
К вероятностным моделям относятся модели, построенные с помощью аппарата теории вероятностей, модели случайных процессов марковского типа (марковские цепи), модели теории массового обслуживания и др.
Вероятностные модели описывают явления и процессы случайного характера, например связанные со всевозможными несистематическими отклонениями и ошибками (производственный брак и др.), влиянием стихийных явлений природы, возможными неисправностями оборудования и т. п.
К статистическим моделям относятся модели последовательного анализа, метода статистических испытаний (Монте-Карло) и др. Сюда же можно отнести и методы случайного поиска.
Метод статистических испытаний заключается в том, что ход той или иной операции проигрывается, как бы копируется с помощью ЭВМ, со всеми присущими данной операции случайностями, например при моделировании организационных задач, сложных форм кооперации различных предприятий и т. п. Применение данного метода называют имитационным моделированием.
Методы случайного поиска применяются для нахождения экстремальных значений сложных функций, зависящих от большого числа аргументов. В основе этих методов лежит использование механизма случайного выбора аргументов, по которым осуществляется минимизация. Методы случайного поиска находят применение, например, при моделировании организационных структур управления.
Теоретико-игровые модели предназначены для обоснования решений в условиях неопределенности, неясности (неполноты информации) обстановки и связанного с этим риска. К теоретико-игровым методам относятся теория игр и теория статистических решений.
Теория игр – это теория конфликтных ситуаций. Она применяется в тех случаях, когда неопределенность обстановки вызывается возможными действиями конфликтующих сторон.
Теоретико-игровые модели могут найти применение при обосновании управленческих решений в условиях производственных, трудовых конфликтов, при выборе правильной линии поведения по отношению к заказчикам, поставщикам, контрагентам и т. п.
Теория статистических решений применяется тогда, когда неопределенность обстановки вызывается объективными обстоятельствами, которые либо неизвестны (например, некоторые характеристики новых материалов, качества новой техники и т. п.), либо носят случайный характер (состояние погоды, возможное время выхода отдельных узлов изделия из строя и т. п.).
Теоретико-игровые модели целесообразно использовать при подготовке, проведении и оценке результатов деловых игр.
Все математические модели могут быть подразделены также на модели оценки эффективности и модели оптимизации.
Модели оценки эффективности предназначены для выработки характеристик производства и управления. К этой группе относятся все вероятностные модели. Модели оценки эффективности являются «входными» по отношению к моделям оптимизации.
Модели оптимизации предназначены для выбора наилучших в данных условиях способов действий или линии поведения. К этой группе относятся экстремальные и статистические модели, модели математического программирования, а также теоретико-игровые модели.
Ниже будут рассмотрены некоторые наиболее распространенные модели, применяемые при решении производственных задач, а также для формирования организационных структур управления производством.
Основным направлением моделирования управления производственно-экономическими системами является создание моделей управления производством.
В настоящее время разработаны и находят применение модели следующих функций управления производством:
– планирования производственно-экономической деятельности предприятия;
– оперативного управления;
– оперативного регулирования;
– управления материально-техническим снабжением производства;
– управления сбытом готовой продукции;
– управления технической подготовкой производства.
Разработана также система взаимосвязанных моделей производства и управления.
Модели планирования производственно -экономической деятельности предприятия. Целевая функция моделей этой группы предусматривает:
– максимизацию критерия эффективности производственной деятельности предприятия исходя из наличных мощностей и отпускаемых ресурсов;
– минимизацию расхода ресурсов в рамках заданного критерия эффективности.
Модели планирования производственной деятельности предприятия подразделяются на: модели прогнозирования, модели технико-экономического планирования, модели оперативно-производственного планирования.
Модели прогнозирования представляют собой модели, либо основанные на математических методах (наименьших квадратов, пороговых значений, экспоненциального сглаживания), либо на методах экспертных оценок.
Модели технико-экономического планирования базируются на методах математического программирования (планирования). В качестве основного критерия эффективности (целевой функции) при выработке оптимального плана обычно избираются конечные результаты производства, например величина прибыли. В качестве ограничений берутся ограничения по сложности выпускаемой продукции, времени работы оборудования, ресурсам и т.д. Поскольку величина некоторых из указанных ограничений носит случайный характер (например, время работы оборудования), при решении таких задач оптимизации применяется вероятностный подход. Типовыми оптимизационными моделями технико-экономического планирования являются модели для расчета оптимального плана, распределения производственной программы по календарным периодам, оптимальной загрузки оборудования. Эти модели строятся с помощью математических методов оптимизации.