КВ-приемник мирового уровня? Это очень просто!
КВ-приемник мирового уровня? Это очень просто! читать книгу онлайн
… С чего начать будущему электронщику, какое направление выбрать? Компьютеры, телевизоры, видики?… Но, учитывая их колоссальную сложность и специфику — это задача сомнительная! Правда, можно «лепить» целые системы из готовых компьютерных плат. Но где же тут особое творчество?
Да и микросхемы большого уровня интеграции, поверьте, мало чем могут помочь для развития у радиолюбителя умения «читать» любые схемы… Необходима такая область, такое направление электроники, которое, обеспечивая накопления бесценного опыта в конструировании, имело бы и самостоятельную ценность.
Такая область существует — это создание высокочувствительных (как коротковолновых, так и всеволновых) приемников, основанных на современной профессиональной идеологии создания подобной аппаратуры.
От азов электроники и радиотехники — к современному высокочувствительному супергетеродинному приемнику с двойным преобразованием частот и верхней первой ПЧ… Оснащенному высокоэффективной цифровой шкалой настройки — вот о чем эта книга! Те, кто хочет самостоятельно изготовить и отладить приемник мирового уровня — эта книга для вас!
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
«А»: Потому что в его основе лежит такое явление, как ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ! Это явление настолько важно для электроники, что хочу рассказать тебе о нем.
В природе существует большое количество явлений, имеющих «обратимый» характер. И в нашем случае, если ток способен создавать магнитное поле вокруг проводника, то и магнитное поле, в свою очередь, должно было бы генерировать ток в проводнике. Например так, как показано ниже (рис. 2.8).
Смотри, Незнайкин, чтобы увеличить эффект, я изобразил проводник, выполненный в виде катушки и обозначенный римской двойкой, который подвергается воздействию магнитного поля, наводимого (индуцированного) катушкой, обозначенной римской единицей. Как ты думаешь, что произойдет в этом случае?
«Н»: Полагаю, что во вторичной катушке возникает ток I2. который создаст на резисторе R соответствующее падение напряжения, что немедленно зафиксирует вольтметр V.
«А»: То же самое полагали десятки исследователей XVII и XVIII веков. И жестоко просчитались. Вольтметр не покажет НИЧЕГО.
«Н»: Но почему!?…
«А»: Да потому, что Природа распорядилась так, что ток I, возникает в вышепреведенной схеме, если мы… выключили первую цепь, то есть ту часть схемы, которая содержит батарейку, выключатель и электромагнит! Но ток I2 возникает ненадолго. Наблюдатель увидит бросок напряжения, а затем стрелка снова покажет НУЛЬ!
«Н»: Ну, а что произойдет, если снова замкнуть первичную цепь?
«А»: А то же самое! За одним исключением… Бросок напряжения будет иметь ОБРАТНУЮ полярность!
Отсюда следует один из фундаментальнейших выводов — ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ, ИМЕЮЩЕЕ ПЕРЕМЕННЫЙ ВО ВРЕМЕНИ ХАРАКТЕР, СПОСОБНО ИНДУЦИРОВАТЬ ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ ВО ВТОРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ, НЕ СВЯЗАННОЙ НЕПОСРЕДСТВЕННО С ПЕРВИЧНОЙ ЦЕПЬЮ!
«Н»: …Иначе, чем посредством самого этого электромагнитного поля?
«А»: Браво, Незнайкин! Я и хотел, чтобы к этой мысли ты пришел сам! Само явление наведения вторичного тока первичным и носит название ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ!
«Н»: «И он стал умнее, чем он был!». Это я, в данном случае, о себе самом! Дружище, хватит на сегодня! Все это должно утрамбоваться в моей голове!
«А»: Понимаю и согласен! До встречи, дружище!
Глава 3. Индуктивность… Добротность… Резонанс…
«Аматор»: Заходи-заходи, дружище!
«Незнайкин»: У тебя, как ты мне признался по телефону, есть время, а у меня и время, и желание продолжить разговор на тему электромагнитной индукции!
«А»: «Я очень счастлив и рад за вас!». Полагаю, что продолжить разговор об электромагнитной индукции просто необходимо, поскольку с ее характером следует познакомиться поближе. А характер у нее весьма упрямый!
«Н»: В каком смысле — «упрямый»?
«А»: Да в самом, что ни на есть, прямом! Дело в том, что наведенный во вторичной обмотке, иначе говоря, ИНДУЦИРОВАННЫЙ ТОК I2 ВСЕГДА находится в противофазе с индуцирующим током I,! Если индуцирующий ток увеличивается в одном направлении, то индуцированный ток — течет в противоположном направлении, как бы препятствуя увеличению первого! А когда индуцирующий ток уменьшается, индуцированный ток течет В ТОМ ЖЕ НАПРАВЛЕНИИ, как бы препятствуя уменьшению первого! Взгляни на рис. 2.8.
«Н»: И ты считаешь, что эту головоломку я запомню и пойму?
«А»: Выше голову! Ведь сказанное ранее можно сформулировать и более кратко. Например, так:
ИНДУЦИРОВАННЫЙ ТОК ВСЕГДА ИМЕЕТ ТАКОЕ НАПРАВЛЕНИЕ, КОТОРОЕ ПРОТИВОДЕЙСТВУЕТ ЛЮБЫМ ИЗМЕНЕНИЯМ ИНДУЦИРУЮЩЕГО ТОКА!
Я скажу даже больше, чем БЫСТРЕЕ происходит изменение величины тока в первичной обмотке, тем сильнее реакция вторичной обмотки!
«Н»: То есть ВЕЛИЧИНА ИНДУЦИРОВАННОГО ТОКА ПРОПОРЦИОНАЛЬНА СКОРОСТИ ИЗМЕНЕНИЯ ИНДУЦИРУЮЩЕГО ТОКА, а также его ВЕЛИЧИНЕ?
«А»: Правильно совершенно!
«Н»: Вот тебе и «простой медный провод»! Удивительный эффект!
«А»: Но и это еще не все!.. Как ты думаешь, что произойдет в такой вот простенькой схемке (рис. 3.1)?
«Н»: Сейчас-сейчас, только график набросаю… Готово! Теперь будем рассуждать, как на эпюру напряжения на индуктивности L наложится эпюра тока.
«А»: В момент А изменение напряжения во времени (т. е. ΔU/Δt) минимально. Поэтому ток равен НУЛЮ! Затем напряжение на участке АВ падает до НУЛЯ. Но при этом отношение ΔU/Δt — ВОЗРАСТАЕТ! Поэтому генерируемый электромагнитным полем индуктивности L ток I имеет такое направление, чтобы не дать напряжению на выводах индуктивности L упасть до нуля! То есть в этом случае в точке В ток максимален, а его полярность положительна!
Но вот напряжение генератора становится отрицательным. И отношение ΔU/Δt — уменьшается! Ток I по-прежнему положителен, но его величина падает, становясь равной нулю в точке С. В тоже время в этой точке амплитуда отрицательной полуволны напряжения максимальна! Но когда на участке CD амплитуда напряжения падает, генерируемый электромагнитным полем индуктивности ток I возрастает, но теперь этот ток имеет отрицательную полярность, поскольку он препятствует спаданию напряжения на индуктивности до нуля!
«Н»: Если я правильно понял, электромагнитная индукция может индуцировать ток даже в своих собственных витках?
«А»: Ну конечно. В этом случае это явление именуется как САМОИНДУКЦИЯ!
«Н»: Я вспоминаю твой рассказ о временах Пунических войн! Помнишь, ты рассказывал о римском сенаторе, который свои выступления в сенате на тему о проблемах римского плебса, на тему об улучшении торговли, благоустройстве дорог и так далее, заканчивал всегда одной и той же фразой!..
«А»: «Карфаген должен быть разрушен!»? То есть ты снова намекаешь на то, какое отношение все наши рассуждения об удивительных свойствах индуктивностей и емкостей имеют к электронике?
«Н»: Ты прав, о высокочтительный друг мой!
«А»: А вот ты, Незнайкин, не совсем! Только теперь мы подошли к самому интересному. Как ты думаешь… А впрочем, я виноват в том что мы еще ничего не сказали о том, что является основной единицей индуктивности. Так вот, в качестве таковой принят ОДИН ГЕНРИ.
1 ГЕНРИ — это такая индуктивность, при которой изменение напряжение на ее выводах на 1 вольт в течении 1 секунды вызывает появление противодействующего такому изменению тока, равного 1 амперу. Заметим, что вообще 1 генри — это исключительно большая индуктивность, которая нигде не встречается. Поэтому в ходу более мелкие единицы:
1 генри = 1000 миллигенри = 1000000 микрогенри.
А теперь — последнее, Незнайкин! Как мы ранее уже могли убедиться, поскольку при приложении напряжения к индуктивности (из-за присущей ей инерции) происходит отставание тока от напряжения, то говорят, что ток отстает по фазе. Любопытно, что для емкости, ток опережает по фазе напряжение! А теперь — вопросы.
«Н»: Ты как-то употребил в разговоре выражение — реактивное сопротивление! Что же это такое и присуще ли оно только емкости?
«А»: Нет, не только! Индуктивность тоже характеризуется реактивным сопротивлением. В самом общем смысле этот термин означает, что реактивная мощность, равная произведению мгновенного значения емкостного (или индуктивного) тока на напряжение не преобразуется в тепло! Поскольку она затрачивается не на увеличение амплитуды тепловых колебаний атомов кристаллической решетки, как в случае активного сопротивления, а на изменение интенсивности электромагнитного поля (в индуктивности) или на поляризацию диполей изолятора (в конденсаторе). А это, практически, не носит теплового характера…